Black-White Differences in ALE in the US and the Role of SES: Illustration of a Bayesian Approach to Assessing the Importance of Intervening Variables in MSLTs

Scott M. Lynch, Princeton University

J. Scott Brown, Carolina Population Center

REVES, May 2005

Introduction

Most research on ALE:

- Uses disaggregated raw data to examine group differences in ALE
- Generates point estimates for ALE, DLE, and TLE
- (exception: IMaCh users)

cont'd

- But, disaggregation & point estimation has limitations
 - Does not allow statistical testing of group differences
 - More importantly, because covariates can't be modeled, it cannot allow estimation of role of intervening variables

cont'd

In this research:

- We show how a Bayesian approach can remedy these shortcomings
- We do so in assessing the role of education in explaining black-white differences in ALE in the US
- Purpose both methodological and substantive

Substantive Background

- Extant literature has studied race differences in US health and mortality extensively
 - Known that blacks fare worse until possibly in very late life: worse health, mortality rates, and ALE
 - SES differences account for a large proportion (but not majority) of differences

cont'd

 Little research has examined role of education in ALE differences

- But important because ALE combines health and mortality experience
- Important for additional reasons: cohort change in educational attainment can help us understand future of race differences in ALE

Questions:

Are there race differences in ALE, DLE, and TLE (and the proportion ALE/TLE)
 What proportion of these racial differences are explained by education?

Data

- Data from the 1987 and 1992 followups to the NHANES (NHEFS)
- Limit to black and white survivors age 65+ in 1987, for whom status in '87 and '92 were known (n=3,056)

Include sex, race, and education as covariates, along with age (in 5-year groups) & disability status (1+ ADLs)

Analysis

- 1. Estimate a multivariate hazard model w/ Gibbs sampling—get *m* samples of parameters
- 2. Take distributions of parameters and generate *m* transition probability matrices for multistate life table estimation for given covariate profiles
- 3. Summarize distributions of ALE

Analysis, cont'd

State space for model is:

Model Estimation

Use Gibbs sampling

 Simulate (Y*,Z* | β, ω, Σ)~TBvn()
 (bivariate normal latent data for observed bivariate dichotomous data)
 Simulate (β_j | β_{-j}, ω, Σ, Y*, Z*)~N()
 Simulate (Σ | β, ω, Y*, Z*)~InvW()

- Repeat

Life Table Estimation

- Tables are estimated for each parameter sample from the Gibbs sampler
 - Choose covariate profile and construct transition probability matrices
 - Generate mslts using a basic approach:

l(i, a+1)=l(i, a) + l(+i, a) - l(-i, a)

Issues: How account for race differences?

Choice of hazard model(s)

 One model with education included

 Choice of covariate profiles

 Set female=.5
 Four profiles: black/white; black/white means for education

 Choice of radices

- Two sets: black/white proportions at 65

Descriptives

<u>Variable</u>	<u>B (n=355)</u>	<u>W (n=2701)</u>
Age	MD~77	MD~76
Female	65.1%	60.9%
Education	7.9(3.9)	10.5(3.4)
Start Disabled	25.1%	16.4%
End Disabled	20.8/32.0%	14.8/21.4%
End Dead	34.9%	30.9%

Gibbs Trace Plot, e.g.

Histogram of (Disability) Intercept from Gibbs Sampler

Probit Results

<u>Variable</u>	<u>Dis.</u>	<u>Death</u>	<u>Dis.</u>	<u>Death</u>
Const.	-1.4***	-1.1***	-1.3***	8***
Age	.22***	.32***	.22***	.33***
Dt1	1.55***	.69***	1.6***	.64***
A*Dt1	20***	0	21***	.01
Female	.10**	40***	.10	39***
Black	.21*	.03	.18#	02
Educ.			01	02*

Interpretation of Probit

 If just using standard interpretation, education "explains" 14.3% of difference in disability between blacks and whites

Similarly, education "explains" (*more than*) 100% of mortality difference
 But, what about ALE (and TLE)?

Black and White TLE: Education *not* Controlled

Black and White TLE: Education Controlled

Black and White ALE: Education *not* Controlled

Black and White ALE: Education Controlled

	Cha Inc	nge in Iusion c	ALE an of Educ	d TLE with ation
JV.	<u>Profile</u>	<u>White</u> <u>(ALE/TLE)</u>	<u>Black</u>	<u>Chg(%)</u>
R-E	BM	12.0(.31)	9.86(.7)	2.13
		14.6(.30)	13.7(.7)	.97
′R-	BM	12.0(.31)	10.88(.7)	1.11(48%)
		11 (20)	1 4 1 7 (7)	r + (A 7 0 /)

WR-WM

<u>C</u>

B

W

 14.6(.30)
 14.12(./)
 .51(4/%)

 12.0(.31)
 11.3(.7)
 .74 (65% / 34%)

 14.6(.30)
 14.6(.8)
 .07 (97% / 86%)

Substantive Conclusions

- Not substantial race differences at 65 in TLE, but
- Significant differences in ALE and ALE/TLE exist
- If radices are not a function of education, 34% of ALE difference is explained by education differences; 86% of TLE is
- If radices are a (total) function of education, 65% of ALE difference is explained by education differences; 97% of TLE is

Methodological Notes

Approach works very well and is flexible
Software allows unlimited covariates
"Always" converges with Gibbs sampling
Hazard model run takes about 5-10 minutes; life table construction takes about 5 minutes

Cont'd

Limitations

- Written in Unix-based C only, at the moment
- Age-dependence is probit only
- Limited to 3 states
- No random effect for multiple waves yet

Cont'd

Questions:

- What is the best way to set radices???
- How can cohort change be considered???
- Proportional change in ALE (to TLE) only changes by 5%: how should this be interpreted?

Full Conceptual Model

