

How large does my study have to be?

Fiona Matthews and Ardo van den Hout MRC Biostatistics Unit Cambridge, UK

Background

- Estimating transitions and life expectancies using longitudinal data is being encouraged
- Many longitudinal studies exist, but how large do they have to be to estimate parameters well

Study size questions

- Irreversible diseases
- Reversible diseases
- Interval between interviews
- Total study length
- "Doctors Care"
- Variable study lengths

Overview

- Simulation models
- Fixed interval models
- Variable study lengths
- Discussion

Models

- Simulation models of reversible disease
 - Transition between health and ill-health and back allowed
 - Transitions between health, ill-health and death
- All individuals disease free at start of study
- Total study length (10 years and 5 years)
- Interval between waves (1 year and 2 years)

Parameters of the model

Transitions (for example)

Values for simulation

$$\alpha_{12} = 0.002$$
 $\beta_{12} = 0.05$
 $\alpha_{13} = 0.007$
 $\beta_{13} = 0.05$
 $\alpha_{21} = 0.01$
 $\beta_{21} = 0.05$
 $\alpha_{23} = 0.02$
 $\beta_{23} = 0.05$

Methods

- Continuous time Markov Chain models with piecewise constant intensities
 - (similar to IMaCh which uses discrete time and piecewise constant probabilities)

- Simulations, transitions and life expectancies undertaken using R and C
- Life expectancy measured using the integrals of the probabilities

Results for fixed interval

Study length		Ten years				Five years	
Interview interval		One year		Two years		One year	
Study size n=250							
Actual	a ₂₁ =0.01	0.0098	(0.01)	0.0113	(0.02)	0.0122	(0.03)
values	a ₂₃ =0.02	0.0207	(0.01)	0.0219	(0.02)	0.0203	(0.02)
	_{β21} = 0.05	0.0599	(0.09)	0.0524	(0.18)	0.0897	(0.30)
	_{β23} =0.05	0.0542	(0.04)	0.0500	(0.06)	0.0757	(0.21)
Study size n=500							
Actual	a ₂₁ =0.01	0.0106	(0.01)	0.0107	(0.01)	0.0102	(0.01)
values	a ₂₃ =0.02	0.0205	(0.01)	0.0206	(0.01)	0.0206	(0.01)
	_{β21} =0.05	0.0486	(0.04)	0.0521	(0.06)	0.0611	(0.15)
	_{β23} = 0.05	0.0524	(0.03)	0.0528	(0.03)	0.0547	(0.05)

Detail on study size

Study length ten years interview every 24 months

	n=250	n=500	n=1000	
a ₁₂ =0.002	0.0021 (0.01)	0.0020 (0.01)	0.0020 (0.01)	
_{β12} =0.05	0.0506 (0.05)	0.0514 (0.02)	0.0511 (0.02)	
a ₁₃ =0.007	0.0069 (0.01)	0.0070 (0.01)	0.0070 (0.01)	
_{β13} =0.05	0.0511 (0.01)	0.0507 (0.01)	0.0502 (0.01)	
a ₂₁ =0.01	0.0113 (0.02)	0.0107 (0.01)	0.0103 (0.01)	
_{β21} =0.05	0.0524 (0.18)	0.0521 (0.06)	0.0511 (0.04)	
a ₂₃ =0.02	0.0219 (0.02)	0.0206 (0.01)	0.0202 (0.01)	
_{β23} =0.05	0.0500 (0.06)	0.0528 (0.03)	0.0516 (0.02)	

Results (2)

- Coverage of true values is good for all studies, but best for ten years with followup every year
- 500 individuals is sufficient for ten years of follow up with interviews every year
- 1000 individuals is sufficient for ten years of follow-up with interviews every two years

Methods (2)

 Fixed interview lengths may be intended but not observed

- Variation based on skewed normal distribution
 - Mean at intended time
 - Length slightly extended

Variable length intervals

Results of variable length

	Fixed interval	Normal		
α ₁₂ =0.002	0.0020 (0.0101)	0.0020 (0.0101)		
_{β12} =0.05	0.0514 (0.0249)	0.0050 (0.0238)		
$\alpha_{13} = 0.007$	0.0070 (0.0072)	0.0070 (0.0072)		
β13= 0.05	0.0507 (0.0086)	0.0504 (0.0086)		
$\alpha_{21} = 0.01$	0.0107 (0.0083)	0.1070 (0.0084)		
$\beta 21 = 0.05$	0.0521 (0.0643)	0.0543 (0.0596)		
$\alpha_{23} = 0.02$	0.0206 (0.0138)	0.2090 (0.0143)		
_{β23} =0.05	0.0528 (0.0326)	0.0501 (0.0320)		
	Negative	Positive		
α ₁₂ =0.002	0.0020 (0.0102)	0.0021 (0.0101)		
_{β12} = 0.05	0.0507 (0.0211)	0.0517 (0.0285)		
$\alpha_{13} = 0.007$	0.0070 (0.0071)	0.0070 (0.0072)		
_{β13} =0.05	0.0506 (0.0087)	0.0500 (0.0091)		
α ₂₁ = 0.01	0.0105 (0.0079)	0.0106 (0.0090)		
$\beta 21 = 0.05$	0.0512 (0.0502)	0.0564 (0.0935)		
α_{23} =0.02	0.0206 (0.0138)	0.0206 (0.0139)		
_{β23} =0.05	0.0505 (0.0285)	0.0534 (0.0358)		

Effect of study design on life expectancy (example from in state 1)

	TRUE 1	Ten years	Five years		
		24 mo	12 mo	12 mo	
		FI	FI	FI	
65 years	11.31	11.35 (0.58)	11.36 (0.58)	11.33 (0.78)	
75 years	7.88	7.89 (0.30)	7.89 (0.29)	7.88 (0.41)	
85 years	5.25	5.23 (0.28)	5.23 (0.29)	5.25 (0.41)	
	24 mo	24 mo	24 mo		
	Normal	Negative	Positive		
65 years	11.33 (0.63)	11.33 (0.64)	11.32 (0.59)		
75 years	7.90 (0.30)	7.88 (0.32)	7.88 (0.29)		
85 years	5.25 (0.27)	5.23 (0.28)	5.21 (0.27)		

Conclusions

- Studies do not have to be enormous to measure longitudinal changes
- Irreversible diseases need smaller studies than reversible diseases
- Interval between waves needs to be shorter than latent state
- Variation around a mean for the designed interval does not adversely effect the study size

Other issues

- Different parameters does not change the conclusions
- Biased study designs to subsets of data do not bias the transitions or life expectancy estimates
- Need to investigate study design for mixed disease states at start of study
- Need to investigate different ages at start of study