Scientific Institute of Public Health

"Variance Estimation Methods for Health Expectancy by relative socio-economic Status"

<u>Abatih E</u>.

Van Oyen H., Bossuyt N. & Bruckers L.

Manila, 7th May, 2008

Contents

Introduction Methods Case Study Discussion

Introduction

Socio-economic inequalities in HE

- Uses educational level, income or occupation
- Inform health policy makers
- Definitions of SES
- Cohort effect
- Comparison between sub-groups

SE inequalities in HE on relative scale

- Neutral ground (Independent of definitions for SES)
- Accounts for the cohort effect (regression)
- Fosters international comparisons

Methodological issues

- Data
- Sampling design scheme of HIS
- Variance estimation
- Confidence intervals

Objectives:

- Estimation of variance of HE by Relative SES
- Incorporate survey design
- Confidence intervals
- Implications of methods

Methods

Measures of morbidity

- Limiting or extremely long-standing illness
- Perceived general health status
- Functional disabilities

Calculation of HE - Sullivan's method – Based on the life table Describes the survival experience of a real or hypothetic group of people followed from birth or other ages in their time

Abridged life table5 or 10 years age intervals

Sullivan's HE:

$$H\hat{E} = \frac{\left[\sum \left(1 - \pi_i\right) * L_i\right]}{l_x}$$

Where; π_i are the prevalences of ill health conditions L_i are the number of person years lived in the age inte l_x number of persons surviving at the begining of the interval

Variance of HE:

$$S^{2}(HE_{i}) = \frac{1}{l_{x}^{2}} \sum_{i=x}^{w} L_{i}^{2} * S^{2}(\pi)$$

Where;

$$S^{2}(\pi) = \frac{\pi * (1 - \pi)}{N}$$

Measurement of inequalities in HE

- Higher socio-economic status versus lower socioeconomic status Sizes of two groups differ Only extreme groups are compared Association throughout levels of socio-economic status no taken into account Cohort effect - Regression based method SES is operationalized as relative position on a SE scale (between 0 and 1)

Survey logistic regression Based on raw survey data Survey sampling design variables Weights Stratification variable Clustering variable Survey logistic regression model:

 $logit(\pi) = \beta_0 + \beta_i * x_i$

 $\hat{\pi} = \frac{\exp(\theta)}{1 + \exp(\theta)}$ $\theta = \log i t(\hat{\pi})$

Variance of prevalence Delta method Letting $\rho = var(\theta)$

$$\operatorname{var}(\hat{\pi}) = \left[\frac{\exp(\theta)}{\left[1 + \exp(\theta)\right]^2}\right]^2 * \rho$$

Variance of HE Sullivan's method 95% Confidence intervals Normal approximation to the binomial:

$$H\hat{E} \pm s.e(H\hat{E}) * 1.96$$

- Bootstrap weighted least squares regressio – Aggregated data
 - Survey design: weighted prevalences
 - Assume relationship between prevalence(y) and relative position (x) on the social hierarchy are lir
 - Regression model:

$$y = \alpha + \beta^* x + \varepsilon$$

- Weights=relative sizes of the educational levels for each age group

- Generate n prevalences from a Bernoulli distribut – Fit model n times for each age group Predict the prevalence of ill health condition for those the highest (x=1) and lowest (x=0) positions of the soc hierarchy – Use Sullivan's method to estimate the HEs HE and its Variance : – Use distribution of the n generated HE 95% confidence intervals: - Studentized confidence intervals <u>– Give better coverage</u>

CI of inequalities in HE – Cauchy Swartz inequality:

$$\operatorname{var}(H\hat{E}_1 - H\hat{E}_2) \le \left[\sqrt{\operatorname{var}(H\hat{E}_1)} + \sqrt{\operatorname{var}(H\hat{E}_2)}\right]^2$$

$$(H\hat{E}_1 - H\hat{E}_2) \pm 1.96 * \sqrt{\operatorname{var}(H\hat{E}_1 - H\hat{E}_2)}$$

Case study

- Disability-free life expectancy (DFLE)
 Objectives
 - Estimate DFLE and their variances
 Logistic regression
 Bootstrap
 - Testing for significance of differences in DFLE
- Compare survey logistic regression and bootstrap method

Mortality data

Derived from the Belgian National Mortality
Database

Morbidity data

- Health Interview Survey (HIS)(1997)
- Based on a complex sampling design scheme

Measure of morbidity Functional disability World Health Organisation (WHO) instrument including activities of daily living (ADL) e.g dress hearing, seeing etc.... Moderately limited: had difficulties performing one the activities Severely limited: could only perform activities with help of others Disability Severely limited or moderately limited

Results

able 1: Comparison of results from the Bootstrap ar logistic regression methods for Flemish Women

Bootstrap					Logistic regression				
	Lowest	Lowest position		Highest position		Lowest position		Highest positio	
е	DFLE ₂₅₋	Variance	DFLE ₂₅₋	Variance	DFLE ₂₅₋	Variance	DFLE ₂₅₋	Varian	
	74		74		74		74		
	<mark>34.49</mark>	3.350	39.95	1.116	<mark>28.33</mark>	0.911	41.90	0.219	
	<mark>24.81</mark>	<mark>3.250</mark>	30.97	1.073	<mark>20.16</mark>	<mark>0.829</mark>	32.36	0.215	
	<mark>17.84</mark>	<mark>2.594</mark>	21.54	0.949	<mark>13.00</mark>	0.667	23.16	0.209	
	<mark>11.01</mark>	1.953	12.85	0.750	<mark>6.88</mark>	0.458	14.44	0.192	
	<mark>3.51</mark>	1.011	6.27	0.460	<mark>2.70</mark>	<mark>0.179</mark>	6.67	0.124	
_									

able 1: Comparison of results from the Bootstrap ar logistic regression methods for Walloon Women

Bootstrap					Logistic regression				
	Lowest position		Highest position		Lowest position		Highest positio		
е	DFLE ₂₅₋₇₄	Variance	DFLE ₂₅₋₇₄	Variance	DFLE ₂₅₋₇₄	Variance	DFLE ₂₅₋₇₄	Varianc	
	<mark>25.06</mark>	<mark>2.349</mark>	41.93	1.070	<mark>25.57</mark>	0.883	40.25	0.259	
	<mark>17.01</mark>	<mark>2.159</mark>	32.75	0.990	<mark>17.83</mark>	0.777	30.85	0.253	
	<mark>11.15</mark>	<mark>1.558</mark>	23.63	0.909	<mark>11.25</mark>	0.585	21.87	0.242	
	<mark>3.92</mark>	1.262	15.34	0.758	<mark>5.77</mark>	0.378	13.41	0.220	
	<mark>1.05</mark>	0.467	7.16	0.436	2.21	0.132	6.10	0.131	

e 3: Differences in DFLE₂₅₋₇₄ between Flemish women at the lowest and hig positions of the socio-economic hierarchy

BOOTSTRAP					LOGISTIC REGRESSION			
ļ	Difference in DFLE ₂₅₋₇₄	Approx SE of diff	Z- statistic	P- value	Difference in DFLE ₂₅₋₇₄	Approx SE of diff	Z- statistic	P-va
	5.46	2.887	1.89	<mark>>0.05</mark>	13.57	1.423	9.54	<0.0
	7.16	2.839	2.52	<0.02	12.20	1.375	8.87	<0.0
	3.70	2.585	1.43	<mark>>0.10</mark>	10.16	1.273	7.98	<0.0
	1.84	2.264	0.81	<mark>>0.20</mark>	7.56	1.115	6.78	<0.0
	2.76	1.684	1.64	<mark>>0.05</mark>	3.97	0.775	5.12	<0.0

Discussion

Sampling design of HIS should be taken into account

– Use raw survey data

Bootstrap method : Larger variance estimates Different conclusions Aggregated data (very small sample size) Partial account of Survey sampling design

Logistic regression

Raw survey data (larger sample size)

No linearity assumption

Full account of survey design

Correct variance estimates

Conclusions

 Use logistic regression method on raw survey data where available

 Use bootstrap when only aggregated data are available and sample size large enough

- Take survey design into account

Future perspectives

Assess performance of methods on incident rat using Multi-state life table method

Develop strategies for taking full account of survey design in the bootstrap method

Stata and SPLUS

- Stata : Computes logit and its variance
- Splus: Aggregation destroys survey design

SAS and R

- SAS: proc surveylogistic, variance of p
- R : Survey design package

Thanks for your attention!