Sex differences in familial transmission of human longevity

Leonid A. Gavrilov, Ph.D. Natalia S. Gavrilova, Ph.D.

Center on Aging NORC and The University of Chicago Chicago, USA Numerous studies showed that biological relatives of centenarians have substantial survival advantage compared to biological relatives of shorterlived individuals.

Compensation Law of Mortality (Parental Longevity Effects)

Mortality Kinetics for Progeny Born to Long-Lived (80+) vs Short-Lived Parents

Little is known about effects of centenarian's sex on longevity of relatives

Methods

We have developed and analyzed a new computerized database on 1,711 validated centenarians born in 1880-1895 in the the United States, their parents and 13,185 shorter-lived siblings.

Methods

Student t-test was used to compare mean life spans. Gompertz regression models were used to model survival time between age 50 and death for centenarian siblings. Models for brothers and sisters were analyzed separately

Computerized genealogies is a promising source of information about potential predictors of exceptional longevity: lifecourse events, early-life conditions and family history of longevity

Steps of the study

- 23,127 records of centenarians born in 1880-1895 with known information about parents were identified using the Rootsweb genealogical website
- 2,834 centenarians having detailed information on their 21,893 siblings were selected
- 1,711 centenarians with their death dates verified using the Social Security Death Index were used for further analyses

Life expectancy of siblings at age 50 depending on the sex of centenarian

	Male centenarians		Female centenarians		P-value
	Ν	LS50	Ν	LS50	
Brothers	1254	29.01	4018	26.86	<0.001
Sisters	1029	31.26	3666	31.72	0.241

Survival of male siblings of centenarians

Life expectancy of fathers and mothers at age 50 depending on the sex of centenarian

	Male centenarians		Female centenarians		P-value
	N	LS50	Ν	LS50	
Fathers	419	27.22	1364	25.97	0.043
Mothers	402	28.26	1341	27.28	0.143

Multivariate survival analysis Gomperz hazard regression model for survival of centenarian brothers after age 50

N=5,287. Controlled for month of birth and paternal age (NS)

Covariate	Hazard ratio	95% CI	P-value
Father lived 80+	0.889	0.841-0.939	<0.001
Mother lived 80+	0.930	0.881-0.983	0.009
Sibship size	0.993	0.983-1.004	0.220
Female sex of centenarian	1.177	1.105-1.255	<0.001

Multivariate survival analysis Gomperz hazard regression model for survival of centenarian sisters after age 50

N=4,849. Controlled for month of birth and paternal age (NS)

Covariate	Hazard ratio	95% CI	P-value	
Father lived 80+	0.976	0.921-1.033	0.396	
Mother lived 80+	0.932	0.880-0.987	0.015	
Sibship size	1.012	1.001-1.023	0.038	
Female sex of centenarian	1.012	0.945-1.084	0.726	

Hypothesis 1

Male and female centenarians have different survival threshold to reach age 100

Compare siblings of male centenarians to siblings of females survived to age 103

Probability of survival to 103 for females is even lower than the same probability to reach age 100 for males (according to the 1900 U.S. cohort)

Life expectancy of siblings at age 50 depending on the sex of centenarian

	Male centenarians		Females survived to age 103		P-value
	Ν	LS50	Ν	LS50	
Brothers	1254	29.01	974	27.23	0.0002
Sisters	1029	31.26	887	32.27	0.053
Fathers	419	27.22	369	25.81	0.085
Mothers	402	28.26	369	27.68	0.504

Hypothesis 2

Male centenarians and their brothers share living conditions favorable for men

Using siblings-in-law as a control group

Siblings-in-law do not share genetic background and living conditions with centenarians

On the other hand, they usually come from the same socio-economic background

Life expectancy of married siblings and siblings in law at age 50 depending on the sex of centenarian

	Male centenarians		Females centenarians		P-value
	Ν	LS50	Ν	LS50	
Brothers	784	29.53	2437	27.12	< 0.001
Sisters	650	31.36	2378	32.40	0.045
Brothers in law	492	24.95	1857	25.06	0.846
Sisters in law	611	29.22	1796	29.55	0.539

Life expectancy of centenarian spouses and spouses of centenarian siblings at age 50

	Centenarian spouses		Siblings in Iaw		P-value
	Ν	LS50	Ν	LS50	
Men	876	25.38	2349	25.04	0.442
Women	283	31.40	2407	29.46	0.007

Possible explanation

Men often continued to live in the place of their childhood while women more often left parental household.

Favorable living conditions and/or lifestyle of male centenarians could be more likely shared by their brothers rather than sisters as well as by their spouses

Household Property Status During Childhood and Survival to Age 100

Odds for household to be in a 'centenarian' group

Conclusion

Study of centenarian gender effects on survival of relatives suggests that environmental conditions and lifestyle may play more significant role in exceptional longevity than it was thought before

Exceptional longevity in a family of Iowa farmers

- Father: Mike Ackerman, Farmer, lived 1865-1939 lived 74 years
- Mother: Mary Hassebroek 1870-1961 lived 91 years

1.	Engelke "Edward" M. Ackerman b: 28 APR 18	892 in Io	wa 10'
2.	Fred Ackerman b: 19 JUL 1893 in Iowa	103	
3.	Harmina "Minnie" Ackerman b: 18 SEP 1895	in Iowa	100
4.	Lena Ackerman b: 21 APR 1897 in Iowa	105	
5.	Peter M. Ackerman b: 26 MAY 1899 in Iowa	86	
6.	Martha Ackerman b: 27 APR 1901 in IA	95	
7.	Grace Ackerman b: 2 OCT 1904 in IA	104	
8.	Anna Ackerman b: 29 JAN 1907 in IA	101	
9.	Mitchell Johannes Ackerman b: 25 FEB 1909	in IA	85

Acknowledgments

This study was made possible thanks to:

generous support from the National Institute on Aging grant #R01AG028620 For More Information and Updates Please Visit Our Scientific and Educational Website on Human Longevity:

http://longevity-science.org

And Please Post Your Comments at our Scientific Discussion Blog:

http://longevity-science.blogspot.com/

Final Conclusion

The shortest conclusion was suggested in the title of the New York Times article about this study THE NEW FORE PIMER AUXING OCTOBER 30, 1988

IDEAS & TRENDS

For Centenarians, It All Begins at Birth

INHINEY FOUNDAIN.

Control of the set of

It looking in what makes i 00-bias sides useful — forwer float 3 is every 10.000 Acazeions two to that age or older — these who wully agong one badoes hits generator (parricharly having two X clatencompas, as its percent of contenarisate are woments and anvineoremial artherways like good extension wollowershill artherways like good extension and beatth habos.

Not a statistical study of contents into by researchers as the University of Chicago ia: hand some other potential periference of recents longerity. Wence, and pare relanets the line, born in large functions, the order from line tore to three titles more ticity to make it to 100 that beirg losts that a form, these careed is the more West had a letter changes of working that age. And perpit of obviousles age who more the expectacy that there have been and when the expectacy that there is not begin the expectacy that there is half haby, the first shild of a function a state is half haby, the first shild of a function couple from Dense, are you is add

Genes and anoironment still rule when it comes to living an altralong life.

to failes