Trends in Healthy Survival: A Cohort Approach

Michel Guillot, University of Pennsylvania Hyun Sik Kim, University of Wisconsin-Madison

REVES 23, Paris, 27 May 2011

Goal

 Improve measurement of trends in mortality vs. disability to better inform debates about expansion vs. compression of morbidity

Existing approaches for synthetic cohorts

- Sullivan method (Sullivan 1971)
 - Pros: Relies on widely-available data (period life table and age-specific cross-sectional prevalence of disability)
 - Cons: Makes the "stationarity" assumption,
 i.e. assumes that observed cross-sectional
 prevalence of disability is equal to that of the
 synthetic cohort (Brouard and Robine 1992)

Existing approaches for synthetic cohorts

- Multistate method (Rogers et al. 1990, Lièvre et al. 2003)
 - Pros: Most rigorous approach for synthetic cohorts
 - Cons: Requires longitudinal data. This limits the applicability of this approach.

Health expectancies for actual cohorts

- Pros: Stationarity assumption of Sullivan method is valid, so observed age-specific prevalence of disability for cohorts can be combined with cohort life tables to calculate true "unconditional" health expectancies. Same results as multi-state approach, but without longitudinal data.
- Cons: Applies only to cohort now extinct (right truncation). Prevalence of disability data typically not available for periods far in the past (left truncation).
- Rarely used in the literature (Soneji 2006)

Proposed approach

- Cohort approach
- Focus on cohort survival to a given age x instead of life expectancies
- No need to observe entire life course of cohorts
- Not limited to cohorts now extinct also applies to truncated cohorts
- Provides theoretically correct measures without large data requirement of multistate method

Notation

- Probability that an individual born at time t will be alive at age x: p_c(x,t)
- Probability that a newborn born at time t will be alive <u>and</u> "healthy" at age x: p_c(x,t)·Π(x,t+x)

where $\Pi(x,t+x)$ is the proportion of "healthy" individuals aged x at time t+x

Estimating healthy survival to a given age x for a cohort

- Π(x,t+x) can be observed in a health survey
- p_c(x,t) can be obtained from corresponding cohort life table
- p_c(x,t)·Π(x,t+x) is the true probability that a newborn will be alive and healthy at age x in the cohort born at time t. No assumptions are needed.

Trends in healthy survival

- At a given age x, trends over time in p_c(x,t) vs. p_c(x,t)·Π(x,t+x) indicates whether improvements in survival are matched by similar improvements in "healthy survival" for actual, successive cohorts
- No particular assumptions are needed
- Requires availability of cohort life tables up to age x, in addition to cross-sectional health surveys. No need for longitudinal data.

Interpreting trends in healthy survival

- If, at a given age x, p_c(x,t) is increasing faster than p_c(x,t)·Π(x,t+x), this indicates <u>expansion</u> of morbidity in absolute terms
- If, at a given age x, $p_c(x,t)$ is increasing more slowly than $p_c(x,t) \cdot \Pi(x,t+x)$, this indicates <u>compression</u> of morbidity in absolute terms
- Simply look for increases vs. decreases in:
 p_c(x,t) p_c(x,t)·Π(x,t+x)
 = p_c(x,t)·[1-Π(x,t+x)]

Compression vs. expansion of morbidity in relative terms

- Evolution of $p_c(x,t)$ vs. $p_c(x,t) \cdot \Pi(x,t+x)$ in relative terms
- $[p_c(x,t) p_c(x,t) \cdot \Pi(x,t+x)] / p_c(x,t)$ = 1- $\Pi(x,t+x)$
- Look for increases vs. decreases in: 1- Π(x,t+x)
- No need for mortality information

Empirical application

- Human mortality database for cohort survival probabilities
- EHEMU database for proportions of healthy individuals
- Surveys: ECHP, SILC
- Two definitions of "unhealthy" based on activity limitation question:
 - Limited or severely limited
 - Severely limited only
- Calculation of 95% confidence intervals for healthy survival probabilities using binomial framework
- France, males, survival up to age 80

France, Males, Age 80 Limited or severely limited

France, Males, Age 80 Severely limited

France, Males, Age 80 Limited or severely limited

France, Males, Age 80 Severely limited

France, Males, Age 80 Limited or severely limited

France, Males, Age 80 Severely limited

Healthy survival vs. health expectancies

- Survival probabilities and probabilities of healthy survival are useful indicators in their own right
- Expansion vs. compression of morbidity typically examined in terms of health expectancies
- Strong relationship between p_c(x,t) and life expectancies; likely to hold as well for healthy survival vs. health expectancies

Conclusion

Advantages:

- Use of widely available data in a theoretically consistent fashion
- Based on actual experience of cohorts
- With good health survey data, should provide unambiguous picture of trends in mortality and disability

Conclusion

Issues:

- Need to look separately at different age groups – no global estimate such as life expectancy
- Refers to the past dynamics of mortality and morbidity
- Results only as good as the health survey data

Next steps

- Systematic examination of countries, health surveys and health outcomes
- Merging of countries in order to reduce sampling error in Π(x,t+x)
- Comparison with period health expectancy trajectories