Predictors of Exceptional Longevity: Effects of early-life childhood conditions, mid-life environment and parental characteristics

Leonid A. Gavrilov Natalia S. Gavrilova

Center on Aging NORC and The University of Chicago Chicago, USA

Approach

To study "success stories" in long-term avoidance of fatal diseases (survival to 100 years) and factors correlated with this remarkable survival success

An example of incredible resilience

Winnie ain't quitting now.

THE SUN, Tuesday, August 28, 2007

International Journal of Epidemiology

Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2011; all rights reserved.

Exceptional longevity in a family of lowa farmers

- Father: Mike Ackerman, Farmer, 1865-1939 lived 74 years
- Mother: Mary Hassebroek 1870-1961 lived 91 years

1.	Engelke "Edward" M. Ackerman b: 28 APR 18	92 in Io	wa 101
2.	Fred Ackerman b: 19 JUL 1893 in Iowa	103	
3.	Harmina "Minnie" Ackerman b: 18 SEP 1895 i	n Iowa	100
4.	Lena Ackerman b: 21 APR 1897 in Iowa	105	
5.	Peter M. Ackerman b: 26 MAY 1899 in Iowa	86	
6.	Martha Ackerman b: 27 APR 1901 in IA	95	
7.	Grace Ackerman b: 2 OCT 1904 in IA 1	04	
8.	Anna Ackerman b: 29 JAN 1907 in IA	01	
9.	Mitchell Johannes Ackerman b: 25 FEB 1909 i	nIA	85

Studies of centenarians require careful design and serious work on age validation

The main problem is to find an appropriate control group

Approach

Compare centenarians and shorterlived controls, which are randomly sampled from the same data universe: computerized genealogies

Approach used in this study

- Compare centenarians with their peers born in the same year but died at age 65 years
- It is assumed that the majority of deaths at age 65 occur due to chronic diseases related to aging rather than injuries or infectious diseases (confirmed by analysis of available death certificates)

Case-control study of longevity

Cases - 765 centenarians survived to age 100 and born in USA in 1890-91

Controls – 783 their shorter-lived peers born in USA in 1890-91 and died at age 65 years

Method: Multivariate logistic regression

Genealogical records were linked to 1900 and 1930 US censuses providing a rich set of variables

Age validation is a key moment in human longevity studies

- Death dates of centenarians were validated using the U.S. Social Security Death Index
- Birth dates were validated through linkage of centenarian records to early U.S. censuses (when centenarians were children)

A typical image of 'centenarian' family in 1900 census

Genealogies and 1900 and 1930 censuses provide three types of variables

Characteristics of early-life conditions

Characteristics of midlife conditions

Family characteristics

Early-life characteristics

- Type of parental household (farm or nonfarm, own or rented),
- Parental literacy,
- Parental immigration status
- Paternal (or head of household) occupation
- Number of children born/survived by mother
- Size of parental household in 1900
- Region of birth

Midlife Characteristics from 1930 census

- Type of person's household
- Availability of radio in household
- Person's age at first marriage
- Person's occupation (husband's occupation in the case of women)
- Industry of occupation
- Number of children in household
- Veteran status, Marital status

Family Characteristics from genealogy

- Information on paternal and maternal lifespan
- Paternal and maternal age at person's birth,
- Number of spouses and siblings
- Birth order
- Season of birth

Example of images from 1930 census (controls)

Parental longevity, early-life and midlife conditions and survival to age 100. Males

Multivariate	logistic	regression,	N=714
---------------------	----------	-------------	-------

Variable	Odds ratio	95% CI	P-value
Father lived 80+	1.82	1.33-2.50	<0.001
Mother lived 80+	1.97	1.44-2.70	<0.001
Farmer in 1930	1.80	1.30-2.49	<0.001
Age at first marriage	1.01	0.99-1.03	0.204
Born in North-East	1.89	1.16-3.10	0.011
Born in the second half of year	1.43	1.05-1.96	0.022
Radio in household, 1930	0.92	0.67-1.28	0.620

Parental longevity, early-life and midlife conditions and survival to age 100 Women

Multivariate logistic regression, N=750						
Variable	Odds ratio	95% CI	P-value			
Father lived 80+	2.04	1.48-2.81	<0.001			
Mother lived 80+	2.33	1.71-3.17	<0.001			
Husband farmer in 1930	1.23	0.89-1.70	0.210			
Age at first marriage	1.02	1.001-1.04	0.013			
Radio in hh, 1930	1.60	1.16-2.23	0.005			
Born in the second half of year	0.99	0.69-1.43	0.966			
Born in North-East	1.02	0.62-1.65	0.950			

Variables found to be non-significant in multivariate analyses

- Parental literacy and immigration status, farm childhood, size of household in 1900, percentage of survived children (for mother), sibship size, father-farmer in 1900
- Marital status, veteran status, childlessness
- Paternal and maternal age at birth, loss of parent before 1910

Season of birth and survival to 100

Birth in the first half and the second half of the year among centenarians and controls died at age 65

Within-Family Study of Season of Birth and Exceptional Longevity

Month of birth is a useful proxy characteristic for environmental effects acting during in-utero and early infancy development

Siblings Born in September-November Have Higher Chances to Live to 100

Within-family study of 9,724 centenarians born in 1880-1895 and their siblings survived to age 50

Possible explanations

These are several explanations of season-of birth effects on longevity pointing to the effects of early-life events and conditions:

- seasonal exposure to infections,
- nutritional deficiencies,
- environmental temperature and sun exposure.

All these factors were shown to play role in later-life health and longevity.

Conclusions

- Both midlife and early-life conditions affect survival to age 100
- Parental longevity turned out to be the strongest predictor of survival to age 100
- Information about such an important predictor as parental longevity should be collected in contemporary longitudinal studies

Study of biological and nonbiological relatives of centenarians

Numerous studies showed that biological relatives of centenarians have substantial survival advantage compared to biological relatives of shorter-lived individuals

Who lives longer in centenarian families? Siblings > Spouses > Siblings-in-law

Relatives of 1,711 centenarians born in 1880-1895

Deletivee	Men		Women	
Relatives:	Ν	LS50*	Ν	LS50*
Parents	1590	76.2	1557	77.2
Spouses	877	75.4	283	81.4
Siblings	5324	77.6	4877	82.4
Siblings in law	2363	75.1	2410	79.5
1900 US birth		73.3		79.4
cohort				

*Mean lifespan conditional on survival to age 50

Little is known about effects of centenarian's sex on longevity of relatives

In this study effects of centenarian's sex were used to explore genetic and environmental effects on longevity

Dataset

We have developed and analyzed a new computerized database on 1,711 validated centenarians born in 1880-1895 in the the United States, their parents and 13,185 shorter-lived siblings.

Having centenarian brother is 'better' than centenarian sister (for males only)

Siblings of cente-	Male center	narians	Femal cente	le P-valu narians	
narians	Ν	LE50	Ν	LE50	
Brothers	1268	29.25	4056	27.09	<0.001
Sisters	1071	32.06	3806	32.45	0.328

Life expectancy of siblings at age 50 depending on the sex of centenarian

Survival of male siblings of centenarians, by sex of centenarian

Having centenarian son is 'better' than centenarian daughter (for fathers only)

	Male centenarians		Female centenarians		P-value
	N LE50		Ν	LE50	
Fathers	374	27.22	1216	25.93	0.023
Mothers	362	27.97	1195	27.03	0.176

Life expectancy of parents at age 50 depending on the sex of centenarian

Using siblings-in-law as a control group

Siblings-in-law do not share genetic background and living conditions with centenarians

On the other hand, they usually come from a similar socio-economic background, so may be a good control group

Sex of centenarian is important for siblings but not for siblings-in-law

Married rolativos:	Male centenarians		Females centenarians		P-value
relatives.	Ν	LE50	Ν	LE50	
Brothers	784	29.53	2437	27.12	<0.001
Sisters	650	31.36	2378	32.40	0.045
Brothers in law	492	24.95	1857	25.06	0.846
Sisters in law	611	29.22	1796	29.55	0.539

Life expectancy of relatives at age 50 depending on the sex of centenarian

Only women benefit from having centenarian spouse

	Centenarian spouses		Sibling spouses		P-value
Sex of	Ν	LE50	N	LE50	
spouse					
Men	875	25.40	2349	25.04	0.411
Men (married to 103+ centenarians)	214	25.36	2349	25.04	NS
Women	283	31.40	2407	29.46	0.007

Life expectancy of spouses at age 50 depending on the sex of centenarian

Conclusion

Familial factors in human longevity are likely to be sex-specific.

Exploring complex environmental and genetic effects in longevity could be facilitated by further analysis of sex-specific effects

Acknowledgment

This study was made possible thanks to:

generous support from the National Institute on Aging grant #R01AG028620

 stimulating working environment at the Center on Aging, NORC/University of Chicago For More Information and Updates Please Visit Our Scientific and Educational Website on Human Longevity:

http://longevity-science.org

And Please Post Your Comments at our Scientific Discussion Blog:

http://longevity-science.blogspot.com/