

The variability of mortality in women and men: a 'serendipity-type' meta-analysis

Marc Luy & Katrin Gast

REVES 2013, May 27 – 29, Austin, TX

Background and objective

Background

Maximum differences in life expectancy between specific subpopulations in Germany, different ages and periods:

Subpopulations	Men	Women	M-W diff.
Monastic-general population	4.63	1.21	3.42
East-West Germany	3.52	2.83	0.69
German regions	3.61	2.20	1.41
German districts	8.53	5.85	2.68
Education	5.34	2.17	3.17
Occupation	6.01	4.48	1.53
Income	5.56	3.57	1.99

Hypothesis

• The overall mortality level of a population can be seen as the result of the different mortality experiences of specific subpopulations

Hypothesis

- The overall mortality level of a population can be seen as the result of the different mortality experiences of specific subpopulations
- We hypothesize that male excess mortality is to a large extent caused by specific subpopulations of men with high mortality levels that decrease the average life expectancy of men

Hypothesis

- The overall mortality level of a population can be seen as the result of the different mortality experiences of specific subpopulations
- We hypothesize that male excess mortality is to a large extent caused by specific subpopulations of men with high mortality levels that decrease the average life expectancy of men
- If this was true we should expect a higher variability of mortality among men in various kinds of mortality differentials (e.g. by education, race, obesity, place of residence, ...)

• To compare the variability of mortality in women and men in various kinds of mortality differentials

- To compare the variability of mortality in women and men in various kinds of mortality differentials
- Variability of mortality: difference in death rates between the subpopulations with highest and lowest mortality

- To compare the variability of mortality in women and men in various kinds of mortality differentials
- Variability of mortality: difference in death rates between the subpopulations with highest and lowest mortality
- Meta-analysis of empirical studies on specific phenomena of differential mortality that separated by sex <u>without</u> analyzing the differences between sexes

- To compare the variability of mortality in women and men in various kinds of mortality differentials
- Variability of mortality: difference in death rates between the subpopulations with highest and lowest mortality
- Meta-analysis of empirical studies on specific phenomena of differential mortality that separated by sex <u>without</u> analyzing the differences between sexes > "Serendipity-based meta-analysis"

- To compare the variability of mortality in women and men in various kinds of mortality differentials
- Variability of mortality: difference in death rates between the subpopulations with highest and lowest mortality
- Serendipity is "the art of making an 'unsought finding', [...] when two or more elements (observations, hypotheses, ideas, facts, relations or insights) are combined originally, for the finder or anybody, to something new and true."

(P. van Andel, *Brit J Philos Sci* 45, 1994, p. 35)

Data and methods

 We collected results of empirical studies on specific phenomena of differential mortality that separated by sex

- We collected results of empirical studies on specific phenomena of differential mortality that separated by sex
- Studies focusing directly on sex differences were excluded

- We collected results of empirical studies on specific phenomena of differential mortality that separated by sex
- Studies focusing directly on sex differences were excluded
- We used only studies presenting death rates for women and men (or other indicators that allow a transformation into death rates) to derive absolute differences in mortality variations

- We collected results of empirical studies on specific phenomena of differential mortality that separated by sex
- Studies focusing directly on sex differences were excluded
- We used only studies presenting death rates for women and men (or other indicators that allow a transformation into death rates) to derive absolute differences in mortality variations
- Analysis was limited to studies on all-cause mortality

- We collected results of empirical studies on specific phenomena of differential mortality that separated by sex
- Studies focusing directly on sex differences were excluded
- We used only studies presenting death rates for women and men (or other indicators that allow a transformation into death rates) to derive absolute differences in mortality variations
- Analysis was limited to studies on all-cause mortality
- We excluded studies on mortality below age 15 and on years before 1950 (focus on most recent stage of epidemiologic transition)

- We collected results of empirical studies on specific phenomena of differential mortality that separated by sex
- Studies focusing directly on sex differences were excluded
- We used only studies presenting death rates for women and men (or other indicators that allow a transformation into death rates) to derive absolute differences in mortality variations
- Analysis was limited to studies on all-cause mortality
- We excluded studies on mortality below age 15 and on years before 1950 (focus on most recent stage of epidemiologic transition)
- Last publication date of studies: 31 January 2007

Four-step procedure: ~100 keywords (120)

Results

Maximum differences in death rates among women and men, 146 total effects

Maximum differences in death rates among women and men, 146 total effects

Maximum differences in death rates among women and men, 146 total effects

Summary and conclusions

Summary

- In 86% of all total effects and 77% of all single effects the variability in mortality among men was higher than among women (adjusted sex differences line as ref.)
- The corresponding figures for the direct differences in the variability between male and female mortality are 92% and 82%, respectively
- Risk factors with higher variability in women (20-40% of cases): place of residence, smoking, obesity, race \rightarrow age effect
- Risk factors related to SES show almost exclusively a higher variability of mortality in men)

Conclusions

- The findings support our hypothesis that overall male excess mortality is caused to a large extent by specific subpopulations of men with particularly high mortality
- It is likely that the subgroups with the highest mortality in the different risk factors contain to a large extent the same individuals
- The almost exclusively higher mortality variability among men in all effects connected to SES indicates that the particularly disadvantaged male subpopulations can be found in this layer of population subdivisions
- Consequently, our study provides support for the hypothesis of Nathanson & Lopez (1987) that the extent of male excess mortality is mainly determined by the harmful lifestyles of blue-collar men

Thank you very much.

Acknowledgement

This research was supported by the Max Planck International Research Network on Aging (MaxNetAging), Cooperation Agreement/Project No. 65170001 and the European Research Council within the European Community's Seventh Framework Programme (FP7/2007–2013) / ERC Grant Agreement No. 262663 (HEMOX)

