Inflammation genes and longevity and successful ageing in elderly Costa Ricans

Luis Rosero-Bixby Clas Une

UC Berkeley-University of Costa Rica

Background

- Exceptional longevity of elderly Costa Ricans, particularly males.
- Longevity may be associated to low levels of systemic inflammation.
- Some genes modulate inflammation response

The high life expectancy of elderly males in CR

Sources: Human Mortality Data Base (HMD); CCP: http://ccp.ucr.ac.cr/observa/CRindicadores/

Explore if good genes are part of the explanation of Costa Rican longevity

Focus on two inflammation genes (IL-1B3954 and IL-1RN)

Inflammation: a double-edged sword

- Response of host immune system to trauma or infection:
 - Healing effect in acute phase (fever, somnolence, high leukocyte, CRP, IL...)
 - Low-level, chronic → accumulates damage age-related diseases (AD, atherosclerosis, diabetes, sarcopenia, cancer)
- Several genes modulate pro- and antiinflammatory response

IL-1 genes and longevity

- IL-1B(3954) pro-inflammatory: C→T polymorphism higher IL
- IL-1RN inflammation antagonist: allele
 L→2 polymorphism higher IL
- Higher IL people could be better healers
- Low-level systemic IL → More chronic diseases, less longevous.
- CC studies in Italy (134/997) and Finland (250/400) fail to find assoc.

Data and methods

- CRELES = Costa Rican Longitudinal Study of Healthy Aging.
- Panel of ~3.000 adults 60+ with oldest old oversampled
- DNA from blood cells in 2,700, 250 quasi-centenarians
- Genotyping done with PCR
- 5 year survival follow up (2005-11): 750 deaths, survival-time database
- About 20 biomarkers—hard data on health

Analysis strategy

- Allele frequency in the two IL genes:
 - By sex
 - Quasi-centenarians vs. younger
 - Death vs. survivors
- Survival curves and hazard regression by allele polymorphisms → conventional metrics
- Effects on 18 biomarkers, using OLS regressions.

Minor Allele Frequencies--MAF

			IL-	-1RN	
IL-1B(3954)					
Genotype	N	MAF	Genotype	N	MAF
CC	2158		LL	1346	
CT	572		L2	798	
TT	18		22	558	
total	2748		total	2702	
Allele	•		Allele	•	_
С	4888		L	3490	
Т	608	0.111	2	1914	0.354
Caucasic	.10	20			> .35
Asian pops.		<.05			< .10

MAF by sex, longevity and survival

IL-1B = T						
Age and			IL-RN = 2		(N. Observations)	
survival	Males	Females	Males	Females	Males	Females
Total	0.113	0.109	0.353	0.355	(1256)	(1492)
Quasi-centenarian						
Age 95+	0.077	0.093	0.325	0.349	(117)	(129)
60-94	0.116	0.110	0.356	0.356	(1139)	(1363)
Fisher P	(0.082)	(0.464)	(0.383)	(0.891)		
5 year survival						
Death	0.088	0.115	0.352	0.333	(364)	(373)
Survived	0.123	0.107	0.353	0.363	(892)	(1119)
Fisher P	(0.012)	(0.541)	(1.000)	(0.155)		

K-M survival by polymorphisms

Gompertz hazard regression DRRs

Genotype	Base	model	SES adjusted#		
Allele	Males	Females	Males	Females	
IL-1BT	0.75 *	1.13	0.70 *	1.08	
IL-RN2	1.12	0.97	1.10	0.95	
α (1,000s)	10.5 **	8.7 **	22.8 **	17.3 **	
γ (%)	8.3 **	8.3 **	7.1 **	7.1 **	

DRR = Death Rate Ratio or relative hazard of those polymorphism Baseline Gompertz: $h(x) = \alpha \exp(\gamma x)$, where: x = age - 60# Controlled by: education, household wealth, 3 regions, urban/ rural, and a childhood deprivation scale * sig. at P<.05, ** sig at P<.01

Metrics of the IL-1B \rightarrow T advantage

IL-1B gene	Median	life (years)*	Centenarians (%)*		
Allele	Males	Females	Males	Females	
С	22.5	24.5	3.4	6.2	
Т	25.5	23.2	8.0	4.3	

* For a cohort of 60-year olds

18 Biomarkers, 9 groups

- 1. Metabolic indicators: Fasting Glucose; HbA1c
- 2. Cardio Vascular: Diastolic BP; Systolic BP
- 3. Lipids: Triglycerides, Total-, HDL-Cholesterol
- 4. Stress: urine Cortisol; DHEAS; Telomere length
- 5. Inflammation: CRP
- 6. Organ specific function reserve: creatinine clearence (kidney); handgrip (sarcopenia)
- 7. Nutrition: Knee height; BMI; waist
- 8. Functionality: ADL disability scale
- 9. Mental health: cognitive MMS, geriatric depression test

18 OLS regressions

- Normalized biomarker as Y variable Effect of allele T polymorphism Controls for Age-continuous Age-square Sex Interactions of allele T with:
 - sex & 80+, kept only 3 significant

IL-1B=T effects on biomarkers

*Effects of IL-1B=T estimated with OLS regression on each normalized-biomarker with controls for age and gender

Conclusions

- Unexpectedly, elderly men with a pro-inflammation polymorphism gene have lower mortality → more longevous
- This does not mirror in the MAF of quasicentenarians: fewer pro-IL gene
- Those with the pro-IL gene have some metabolic advantage: BP and BMI
- And, as expected, higher CRP
- Complex relationship, more research needed

Thank you!