

Motivation ●○○	Data	Model O	Results	Discussion
Motivation				

- Differences in health and mortality across educational groups are striking and pervasive (Meara et al. 2008)
- Impact of education differ by disease (Mackenback et al.) Some diseases involve complex treatments other simple or hardly effective treatment Impact of education on cause-specific mortality may differ

 Motivation
 Data
 Model
 Results
 Discussion

 o ● o
 o
 o
 o
 o
 o

Causal impact of education on mortality

- Recent results deriving from natural experiments in education suggest that causal effect of education on health is small or even absent (e.g. Lleras-Muney, 2005; Van Kippersluis et al. 2011; Meghir et al. 2013; Clark and Royer, 2013)
- Suggest an important role for confounding factors, such as cognitive ability (Elias, 2004; Auld and Sidhu, 2005; Murasko, 2007; Carneiro et al. 2007; Kaestner and Collison, 2011)
- Educational attainment and cognitive ability strongly correlated. Difficult to disentangle.
- Using structural models:

About half of health disparities across education levels due to selection of the healthier into higher education (Conti and Heckman 2010; Bijwaard et al. 2015a, 2015b).

N D

 Studies on educational differences in cause-specific mortality ignore endogeneity

Motivation	Data	Model	Results	Discussion
000				
Our contribut	tion			

Disentangle the effects of education and cognitive ability on years-lost due a specific cause of death using an extension of structural model of Bijwaard et al. (2015a, 2015b)

Contribution is twofold:

Q Causal effect of education on years-lost due to specific cause

Decompose the observed years-lost (18-63) difference by education level in treatment effect, educational gain, and selection effect both on observed and unobserved characteristics (cognitive ability) Motivation Data Model Results Discussion 000 0

Swedish Military Conscription Data

Examinations for military service men born 1951-1960: 446,545 individuals.

- Detailed info on individual demographic and socioeconomic characteristics, including SES (father and mother at birth) parental education, parental age at birth, birth order and region of birth
- Intelligence test: IQ in 9 categories
- Education classified in 4 levels: less than 10 years, Secondary education (max 12), Full Secondary education and, university (and PhD)

· ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

• Mortality by cause of death, till end 2013.

Motivation	Data	Model	Results	Discussion

Descriptive statistics: selected variables

	less 10	Sec edu (12)	Full Sec edu	university
		mot	her ses	
unskilled workers	10%	9%	7%	6%
Skilled workers	49%	48%	37%	27%
farmers	19%	15%	14%	11%
non-manual (low)	14%	19%	30%	39%
non-manual (intermediate)	2%	2%	5%	8%
non-manual (high)	1%	1%	4%	6%
	father's education			
less 9 years	66%	59%	46%	34%
9–10 years	3%	3%	4%	4%
Secondary edu (max 12)	11%	15%	18%	17%
Secondary edu (13)	5%	8%	11%	15%
university	3%	4%	10%	21%
IQ (1–9)	4.0	4.6	5.7	6.5

N D/I

Motivation	Data	Model	Results	Discussion
000				

Descriptive statistics: distribution cause of death

	less 10	Sec edu (12)	Full sec edu	university
# of deaths	8,770	9,451	2,506	3,829
deaths per 1000	90.8	59.1	45.3	28.4
		causes	of death	
neoplasm	18.2	14.0	13.1	10.0
Cardiovascular diseases	18.4	13.9	10.4	6.3
External causes	31.5	16.5	11.7	6.8
Other causes	22.6	14.7	10.1	5.3

Cumulative incidence curves by cause of death and education level

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シタペ

Motivation	Data	Model	Results	Discussion
000				

Structural model of education and cause-specific mortality

Extension of structural model of Bijwaard et al. (2015a,2015b)

Model the interdependence between education and cause-specific mortality, because both are affected by cognitive ability.

Education attainment D

Ordered probit model depending on observed characteristics and latent cognitive ability, $\boldsymbol{\theta}$

2 Potential cause-specific hazard λ

Depending on education attained and latent cognitive ability: only observe hazards for observed education.

 $\ensuremath{\mathsf{Gompertz}}$ with shape and scale depending on education and cause of death

Measurement, M

Measuring (a proxy) of cognitive ability, IQ, depending on observed characteristics and latent cognitive ability_____

Graphical representation

Motivation Data Model Results Discussion

Inference in competing risks model

- Cause-specific Cox hazard models, λ_k(t)
 Difficult interpretation if one covariate appears in several competing hazards and assumes independence of causes of death.
- Cumulative incidence: probability dying from cause k before t

$$F_k(t) = \int_0^t \lambda_k(s) S(s) \, ds$$

Fine-Gray model sub-distribution hazard also difficult to interpret

• Years (months) lost due a specific cause, (from age 18 till age 63)

$$L_k(18,63) = \int_{18}^{63} F_k(s) \, ds$$

Motivation	Data	Model	Results	Discussion
		•		
Gains				
Gains from	changing s	school level		

• Educational gain $G_c(\tau_0, \tau_1)$;

Average educational difference in months due cause cEducational gain (difference) implied by structural model

Selection effect;

Effect of selecting education: difference with non-parametric estimate $G_{NP,c}(\tau_0, \tau_1)$

 selection on observables G_{NP,c}(τ₀, τ₁) - G_{sep,c}(τ₀, τ₁) with G_{sep,c}(τ₀, τ₁) is the educational gain based on a stratified model (ignoring cognitive ability)

• selection on cognitive ability $G_{sep,c}(\tau_0, \tau_1) - G_c(\tau_0, \tau_1)$ difference structural model and stratified model

Motivation	Data	Model	Results	Discussion

Model estimates of months lost due to specific cause 18-63

Educational gains

Non-parametric estimates

Stratified models

Separate Gompertz hazard models by education level and cause of death, including observed individual characteristics

Structural model

Model accounting for (latent) cognitive ability influencing both education and cause-specific hazards.

Non-parametric: Months lost due to specific cause

(日) (四) (문) (문) æ

Non-parametric: Educational gain

◆□> ◆□> ◆三> ◆三> ● ○ のへで

Motivation 000	Data	Model O	Results	Discussion

Model estimates of months lost due to specific cause 18-63

Non-parametric estimates

Stratified models Separate Gompertz hazard models by education level and cause of death, including observed individual characteristics

Structural model

Model accounting for (latent) cognitive ability influencing both education and cause-specific hazards.

Stratified model: Month lost due to specific cause

(日) (四) (日) (日) (日) - 王

Stratified model: Educational gain

◆□> ◆□> ◆三> ◆三> ● ○ ○ ○ ○

Motivation	Data	Model	Results	Discussion

Model estimates of months lost due to specific cause 18-63

Non-parametric estimates

Stratified models Separate Gompertz hazard models by education level and cause of death, including observed individual characteristics

Structural model

Model accounting for (latent) cognitive ability influencing both education and cause-specific hazards.

Structural model: Months lost due to specific cause

◆□> ◆□> ◆三> ◆三> 三三 のへで

Structural model: Educational gain

◆□> ◆□> ◆三> ◆三> ● ○ ○ ○ ○

Total selection effect

◆□> ◆□> ◆三> ◆三> 三三 のへで

Selection on observed characteristics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Selection on cognitive ability

Motivation Data Model Results Discussion

Summary: Educational gains on cause specific mortality

- educational gain in months lost due to specific cause (accounting for cognitive ability)
- Selection effects: observed and (latent) cognitive ability

Main empirical results:

• Highest educational gain for Lowest education group (< 10 years): 9 mo

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

- Largest gain due reduction in external causes: 1–7 mo small gains for CVD: < 1 month
- Largest selection effect lowest 2 groups: 2 mo
- Largest selection effect for external causes
- Positive selection on cognitive ability.

Motivation 000	Data	Model O	Results	Discussion
Discussion				

- Education, cognitive ability, socio-economic background and health at 18 highly intercorrelated Our structural model accounts for this
- Ignoring this leads to overestimate educational gains
- Still educational improvement beneficial to life expectancy, especially in improving death to external causes.

Limitations

- Other personal traits might affect education non-cognitive skills
 Educational gain is likely to be upper-bound
- Only men