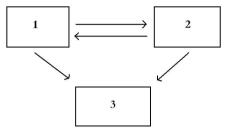
Cognitive impaired life expectancy: Multistate models including misclassification

Ardo van den Hout¹, Fiona Matthews¹ & Carol Jagger²

- ¹ MRC Biostatistics Unit, Institute of Public Health, Cambridge, U.K.
- ² Department of Health Sciences, University of Leicester, U.K.

Plan:


- 1. Data & research question
- **2.** Multistate models & misclassification
- **3.** Estimating life expectancies
- 4. Implementation & results
- **5.** Conclusion & future work

1. Data & research questions

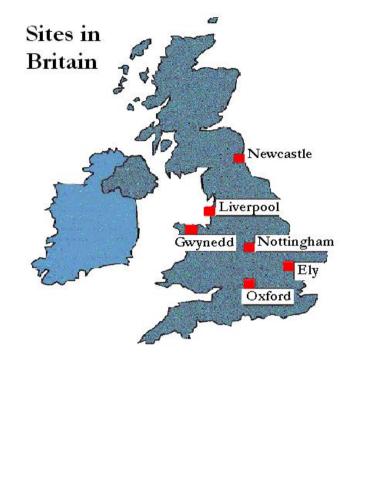
- Data from the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) - a longitudinal cohort study of 13,004 individuals aged 65 and above who have been followed over a 10 year period.
- Cognitive impairment measured using Mini-Mental State Examination with states $1 \equiv not$ impaired and $2 \equiv impaired$. In addition, $3 \equiv death$.
- Interested in: healthy life expectancy \equiv expected remaining lifetime spent free of cognitive impairment.

2. Multistate models & misclassification

• Multistate models describe transitions between the states over time.

• Given a set of possible states, misclassification means that the <u>observed</u> state is not the <u>latent</u> (true) state.

• Misclassification probabilities


 $I\!\!P$ (observed state = s|latent state = r)

have to be estimated.

- <u>Markov assumption</u>: transition to the next state only depends on current state.
 - Discrete-time Markov model, see, e.g., Lièvre et al. (2003) and the software IMaCH.
 - Continuous-time Markov model, see, e.g., Jackson et al. (2003) and the R package msm.
- Markov models that allow for misclassification of the states are called Hidden Markov models (Jackson et al., 2003, and Bureau et al., 2003).

• Data format

ptnum	sex	age	time	state	educ
34	1	6	0	1	1
34	1	8	27	1	1
34	1	20	167	-2	1
35	1	11	0	2	1
35	1	13	29	3	1

age is in years minus 60, state = -2 is censored (not dead), time is in months, educ = 0, 1, 2 is years of education (< 9, 9, > 9 respectively). • Interpretation of a Markov model via transition probabilities such as

$$I\!P\Big(S_{t_2}=s\Big|S_{t_1}=r,\boldsymbol{z}(t_1)\Big),$$

which is the probability of moving from state r to state s in the time interval $(t_1, t_2]$ given covariates $\boldsymbol{z}(t_1)$.

- Fitting a continuous-time Markov model:
 - Via transition intensities q_{sr} , i.e., instantaneous hazards of progression to state s given current state r.
 - Covariates are related to the intensities by $q_{sr}(t, \boldsymbol{z}(t)) = \exp\left(\boldsymbol{\beta}_{rs}^T \boldsymbol{z}(t)\right)$.
- <u>Note</u>: Age as covariate is time dependent.

3. Estimating life expectancies

• Life expectancy in state s, for an individual who begins in state r aged x is given by

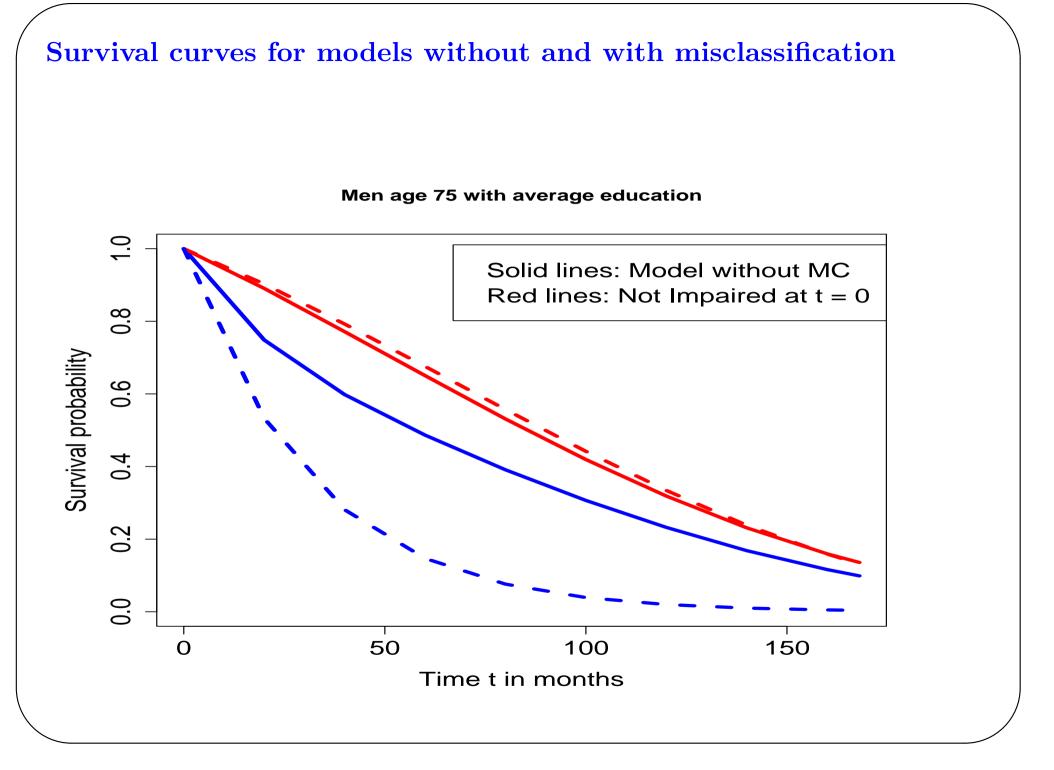
$$e_{rs}(x) = I\!\!E\left[\int_0^\infty \mathbf{1}_{\{S_t=s\}} dt \Big| X_0 = r, x\right] = \int_0^\infty I\!\!P(S_t = s | S_0 = r, x) dt.$$

• Life expectancy in state s irrespectively of the initial state is given by

$$e_{.s}(x) = \sum_{r} I\!\!P(X_0 = r | x) e_{rs}(x),$$

where the r summation is over the not-dead states.

- 4. Implementation in the Cognitive Function and Ageing Study
- 1. Estimate the (hidden) Markov model using the msm package by Jackson.
- 2. Approximate $I\!\!P(S_t = s | S_0 = r, z)$ by piece-wise constant transition probabilities since age is a time-dependent covariate.
- 3. Approximate the integral in $e_{rs}(x)$ by the trapezoidal rule.
- 4. Estimate the initial distribution in $e_{.s}(x)$ by logistic regression.


Model with misclassification

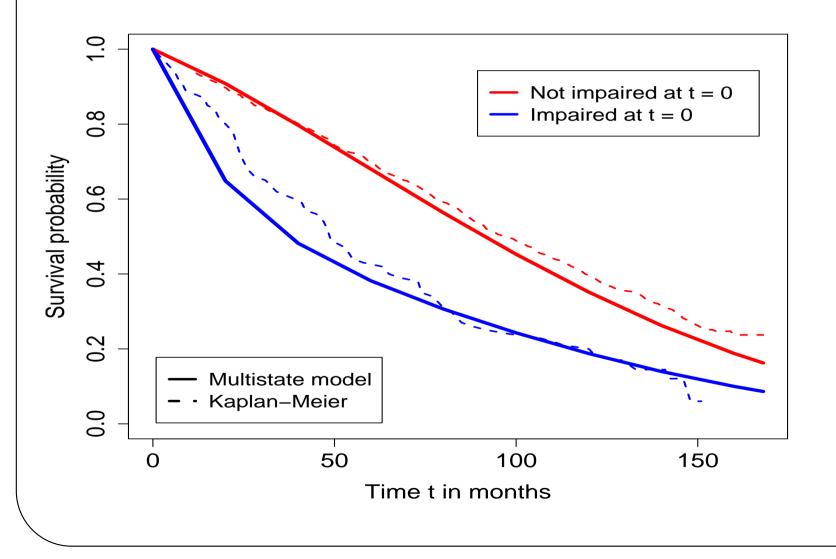
• Transition probabilities $p_{rs} = I\!\!P(S_t = s | S_0 = r)$ for men going from age 75 to age 85, average education:

$\hat{p}_{11} = 0.230$	$\hat{p}_{12} = 0.102$	$\hat{p}_{13} = 0.669$
$\hat{p}_{21} < 0.001$	$\hat{p}_{22} = 0.019$	$\hat{p}_{23} = 0.980$

• Misclassification probabilities $c_{rs} = I\!\!P(O = s | S = r)$ and 95% confidence intervals:

$\hat{c}_{11} = 0.892$	(0.888, 0.895)	$\hat{c}_{12} = 0.108$	(0.104, 0.113)
$\hat{c}_{21} = 0.078$	(0.061, 0.099)	$\hat{c}_{22} = 0.922$	(0.903, 0.938)

Life expectancies	(age = 65 years,	education = average)
⊥		0 /


	Men		Women	
	Not impaired	Impaired	Not impaired	Impaired
Model without misclassification	12.1 (11.1; 12.8)	$1.2 \\ (0.8; 1.6)$	13.5 (13.0; 14.3)	2.7 (2.2; 3.2)
Model with misclassification	$ 11.4 \\ (11.2; 12.4) $	1.1 (0.7; 1.4)	$\begin{array}{c} \textbf{13.4} \\ (12.8;\ 14.2) \end{array}$	1.8 (1.4; 2.2)

(95%-confidence intervals by the bootstrap percentile method, B = 100.)

Goodness of fit

Comparing Kaplan-Meier survival curves with model-based curves.

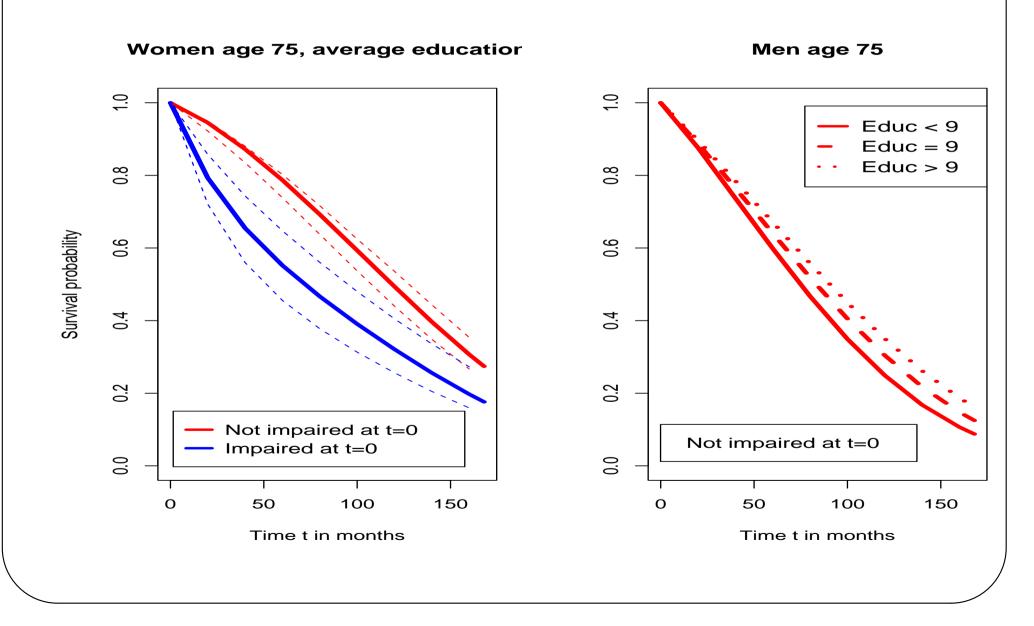
Multistate model without misclassification (men aged 75, averaged education).

5. Conclusion & future work

- Package msm is user-friendly and can accommodate both censoring and misclassification.
- Computation of life expectancies is based on the multistate model.
- Current & future research:
 - Semi-Markov models
 - Pearson-type goodness-of-fit test statistic (Aquirre-H. et al., 2002)
 - Ad hoc approaches to goodness of fit (Bureau et al., 2003).

(a.vandenhout@mrc-bsu.cam.ac.uk)

Goodness of fit


Comparing Kaplan-Meier survival curves with model-based curves.

Multistate model without misclassification (men aged 65, averaged education).

Results:

Survival curves for the model without misclassification

