On the Estimation of Disability-Free Life Expectancy

Samir Soneji Office of Population Research Princeton University

Joint work with

Kosuke Imai Department of Politics Princeton University

May 30, 2006

• DFLE is the expected number of additional years of life spent disability-free.

- DFLE is the expected number of additional years of life spent disability-free.
- Substantive research questions:
 - * People live longer now, but are additional years of life spent in good health?
 - ★ Is life expectancy increasing faster than disability rates are decreasing?
 - ★ As with life expectancy, does a 'crossover' exist in DFLE?

- DFLE is the expected number of additional years of life spent disability-free.
- Substantive research questions:
 - * People live longer now, but are additional years of life spent in good health?
 - ★ Is life expectancy increasing faster than disability rates are decreasing?
 - ★ As with life expectancy, does a 'crossover' exist in DFLE?
- Mortality for a cohort is a continuous time process, determined solely by the hazard function, $\mu(x, y)$, at age $x \in [0, \infty]$ for a cohort born at time y.

- DFLE is the expected number of additional years of life spent disability-free.
- Substantive research questions:
 - * People live longer now, but are additional years of life spent in good health?
 - ★ Is life expectancy increasing faster than disability rates are decreasing?
 - * As with life expectancy, does a 'crossover' exist in DFLE?
- Mortality for a cohort is a continuous time process, determined solely by the hazard function, $\mu(x, y)$, at age $x \in [0, \infty]$ for a cohort born at time y.
- Disability at age x for a cohort born at time y:
 - **\star** Proportion disabled: $\pi(x, y)$
 - * Proportion of disability-free survivors $[1 \pi(x, y)] l(x, y)$

- DFLE is the expected number of additional years of life spent disability-free.
- Substantive research questions:
 - * People live longer now, but are additional years of life spent in good health?
 - ★ Is life expectancy increasing faster than disability rates are decreasing?
 - * As with life expectancy, does a 'crossover' exist in DFLE?
- Mortality for a cohort is a continuous time process, determined solely by the hazard function, $\mu(x, y)$, at age $x \in [0, \infty]$ for a cohort born at time y.
- Disability at age x for a cohort born at time y:
 - ***** Proportion disabled: $\pi(x, y)$
 - * Proportion of disability-free survivors $[1 \pi(x, y)] l(x, y)$
- DFLE equals,

$$e^{\mathsf{DF}}(\mathbf{x},\mathbf{y}) = \frac{1}{\mathfrak{l}(\mathbf{x},\mathbf{y})} \int_{\mathbf{x}}^{\infty} [1 - \pi(\mathbf{t},\mathbf{y})] \ \mathfrak{l}(\mathbf{t},\mathbf{y}) \ \mathrm{d}\mathbf{t}.$$

 Sullivan (1971) proposed a method to estimate DFLE from period life table and cross-sectional disability survey data.

- Sullivan (1971) proposed a method to estimate DFLE from period life table and cross-sectional disability survey data.
- Sullivan's method estimates DFLE by partitioning the person-years lived a given age interval into the proportion with and without disability.

- Sullivan (1971) proposed a method to estimate DFLE from period life table and cross-sectional disability survey data.
- Sullivan's method estimates DFLE by partitioning the person-years lived a given age interval into the proportion with and without disability.
- Academic researchers use it to estimate:
 - ★ DFLE by socioeconomic status (Sihvonen et al. 1998; Molla et al. 2004).
 - ★ DFLE between time periods (Crimmins et al 1989; Graham et al. 2004).

- Sullivan (1971) proposed a method to estimate DFLE from period life table and cross-sectional disability survey data.
- Sullivan's method estimates DFLE by partitioning the person-years lived a given age interval into the proportion with and without disability.
- Academic researchers use it to estimate:
 - ★ DFLE by socioeconomic status (Sihvonen et al. 1998; Molla et al. 2004).
 - ★ DFLE between time periods (Crimmins et al 1989; Graham et al. 2004).
- $1 n_i \hat{\pi}_i$: sample fraction of disability-free within the age interval $[i, i + n_i)$.

- Sullivan (1971) proposed a method to estimate DFLE from period life table and cross-sectional disability survey data.
- Sullivan's method estimates DFLE by partitioning the person-years lived a given age interval into the proportion with and without disability.
- Academic researchers use it to estimate:
 - ★ DFLE by socioeconomic status (Sihvonen et al. 1998; Molla et al. 2004).
 ★ DFLE between time periods (Crimmins et al 1989; Graham et al. 2004).
- $1 n_i \hat{\pi}_i$: sample fraction of disability-free within the age interval $[i, i + n_i)$.
- Sullivan's estimator and variance of Sullivan's estimator:

$$\hat{e}_x^{\text{DF}} = \frac{1}{l_x} \sum_{i \in A_x} (1 - n_i \hat{\pi}_i) n_i L_i$$

- Sullivan (1971) proposed a method to estimate DFLE from period life table and cross-sectional disability survey data.
- Sullivan's method estimates DFLE by partitioning the person-years lived a given age interval into the proportion with and without disability.
- Academic researchers use it to estimate:
 - ★ DFLE by socioeconomic status (Sihvonen et al. 1998; Molla et al. 2004).
 ★ DFLE between time periods (Crimmins et al 1989; Graham et al. 2004).
- $1 n_i \hat{\pi}_i$: sample fraction of disability-free within the age interval $[i, i + n_i)$.
- Sullivan's estimator and variance of Sullivan's estimator:

$$\hat{e}_{x}^{\text{DF}} = \frac{1}{l_{x}} \sum_{i \in A_{x}} (1 - n_{i} \hat{\pi}_{i}) n_{i} L_{i}$$

$$\hat{\sigma}_{x}^{DF} = \frac{1}{l_{x}^{2}} \sum_{i \in A_{x}} \frac{n_{i} \hat{\pi}_{i} \left(1 - n_{i} \hat{\pi}_{i}\right) n_{i} L_{i}^{2}}{n_{i} N_{i}}$$

• Sullivan did not provide any formal justification of his method.

• Sullivan did not provide any formal justification of his method.

• Controversies:

- * Underestimates DFLE bias in disability prevalence (Rogers et al. 1990).
- ★ Observed bias because of non-stationary population (Mathers 1991).
- ★ Recovery transitions (Barendregt et al. 1994,95; Van De Water et al. 1995).

• Sullivan did not provide any formal justification of his method.

• Controversies:

- \star Underestimates DFLE bias in disability prevalence (Rogers et al. 1990).
- \star Observed bias because of non-stationary population (Mathers 1991).
- ★ Recovery transitions (Barendregt et al. 1994,95; Van De Water et al. 1995).

• Conflicting results over required assumptions:

- ★ Probability of transition (healthy to disabled) 'large' (Newman 1988).
- ★ Recovery probability must be negligible (Palloni et al 2005).
- ★ Mortality risk of disabled and healthy homogenous (Palloni et al 2005).

• Sullivan did not provide any formal justification of his method.

• Controversies:

- \star Underestimates DFLE bias in disability prevalence (Rogers et al. 1990).
- * Observed bias because of non-stationary population (Mathers 1991).
- * Recovery transitions (Barendregt et al. 1994,95; Van De Water et al. 1995).
- Conflicting results over required assumptions:
 - ★ Probability of transition (healthy to disabled) 'large' (Newman 1988).
 - ★ Recovery probability must be negligible (Palloni et al 2005).
 - * Mortality risk of disabled and healthy homogenous (Palloni et al 2005).

• Our Theoretical results:

- * Sullivan's method does not make any assumption about the transition probabilities other than that these probabilities must be stationary.
- ★ Sullivan's method does not make any assumptions regarding the homogeneity of mortality risk between the healthy and disabled.

Assumptions and Statistical Properties of Sullivan's Method

Assumptions and Statistical Properties of Sullivan's Method

• Proposition 1. Suppose that the three stationary assumptions of period life tables hold. In addition, suppose that the age-specific disability prevalence is constant over time, i.e., $\pi(x, y) = \pi(x)$ for all y. Then, Sullivan's method estimates DFLE without bias, i.e., $E(\hat{e}_x^{DF}) = e^{DF}(x)$.

Assumptions and Statistical Properties of Sullivan's Method

- Proposition 1. Suppose that the three stationary assumptions of period life tables hold. In addition, suppose that the age-specific disability prevalence is constant over time, i.e., $\pi(x, y) = \pi(x)$ for all y. Then, Sullivan's method estimates DFLE without bias, i.e., $E(\hat{e}_x^{DF}) = e^{DF}(x)$.
- Proposition 2. Under the four stationarity assumptions of Proposition 1, the variance of Sullivan's estimator is given by,

$$\sigma_{x}^{DF} = \frac{1}{l_{x}^{2}} \sum_{i \in A_{x}} \frac{E[\pi(s)]\{1 - E[\pi(s)]\}_{n_{i}}L_{i}^{2}}{n_{i}N_{i}}.$$

The standard variance estimator consistently estimates σ_x^{DF} without any assumption about the function form of $\pi(x)$.

• DFLE w/o tenuous assumption of stationary mortality and disability useful.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - \star Models transition probabilities among healthy and disabled states and death.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - \star Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.
 - 2. Functional form of average number of person-years spent in a state.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - \star Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.
 - 2. Functional form of average number of person-years spent in a state.
 - ★ Typical assumptions of multi-state life table application:

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.
 - 2. Functional form of average number of person-years spent in a state.
 - ★ Typical assumptions of multi-state life table application:
 - 1. Stationarity of age-specific mortality rates.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.
 - 2. Functional form of average number of person-years spent in a state.
 - ★ Typical assumptions of multi-state life table application:
 - 1. Stationarity of age-specific mortality rates.
 - 2. Stationarity of disability rates.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.
 - 2. Functional form of average number of person-years spent in a state.
 - ★ Typical assumptions of multi-state life table application:
 - 1. Stationarity of age-specific mortality rates.
 - 2. Stationarity of disability rates.
 - 3. Stationarity of transition probabilities beyond longitudinal survey period.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.
 - 2. Functional form of average number of person-years spent in a state.
 - ★ Typical assumptions of multi-state life table application:
 - 1. Stationarity of age-specific mortality rates.
 - 2. Stationarity of disability rates.
 - 3. Stationarity of transition probabilities beyond longitudinal survey period.
- If DFLE is quantitity of interest, Sullivan's method can be used to estimate DFLE without the stationarity assumptions and other assumptions using a cohort life table.

- DFLE w/o tenuous assumption of stationary mortality and disability useful.
- Popular approach has been multi-state life table method.
 - * Models transition probabilities among healthy and disabled states and death.
 - ★ Requires a large-scale longitudinal disability survey.
 - ★ Theoretical assumptions:
 - 1. Transition probabilities follow continuous-time first-order Markov process.
 - 2. Functional form of average number of person-years spent in a state.
 - ★ Typical assumptions of multi-state life table application:
 - 1. Stationarity of age-specific mortality rates.
 - 2. Stationarity of disability rates.
 - 3. Stationarity of transition probabilities beyond longitudinal survey period.
- If DFLE is quantitity of interest, Sullivan's method can be used to estimate DFLE without the stationarity assumptions and other assumptions using a cohort life table.
- The unbiased estimation of DFLE is also possible with consecutive cross-sectional disability surveys — easier to obtain than longitudinal data.

• Sullivan's estimator of DFLE for the cohort born in year y is defined by,

$$\hat{e}_{x,y}^{\mathrm{DF}} = \frac{1}{l_{x,y}} \sum_{i \in A_x} (1 - n_i \hat{\pi}_{i,y}) n_i L_{i,y}.$$

• Sullivan's estimator of DFLE for the cohort born in year y is defined by,

$$\widehat{e}_{x,y}^{\mathrm{DF}} = \frac{1}{l_{x,y}} \sum_{i \in A_x} (1 - n_i \widehat{\pi}_{i,y}) n_i L_{i,y}.$$

• Propositions 1 and 2 hold without the stationarity assumptions.

• Sullivan's estimator of DFLE for the cohort born in year y is defined by,

$$\widehat{e}_{x,y}^{\text{DF}} = \frac{1}{l_{x,y}} \sum_{i \in A_x} (1 - n_i \widehat{\pi}_{i,y}) n_i L_{i,y}.$$

- Propositions 1 and 2 hold without the stationarity assumptions.
- If the disability surveys do not cover all age intervals, we can bound DFLE.

• Sullivan's estimator of DFLE for the cohort born in year y is defined by,

$$\widehat{e}_{x,y}^{\text{DF}} = \frac{1}{l_{x,y}} \sum_{i \in A_x} (1 - n_i \widehat{\pi}_{i,y}) n_i L_{i,y}.$$

- Propositions 1 and 2 hold without the stationarity assumptions.
- If the disability surveys do not cover all age intervals, we can bound DFLE.
- Monotonicity assumption: disability prevalence increases monotonically with age. $\pi(x)$ no "worse" before age x and no "better" after age x.

• Sullivan's estimator of DFLE for the cohort born in year y is defined by,

$$\hat{e}_{x,y}^{\text{DF}} = \frac{1}{l_{x,y}} \sum_{i \in A_x} (1 - n_i \hat{\pi}_{i,y}) n_i L_{i,y}.$$

- Propositions 1 and 2 hold without the stationarity assumptions.
- If the disability surveys do not cover all age intervals, we can bound DFLE.
- Monotonicity assumption: disability prevalence increases monotonically with age. $\pi(x)$ no "worse" before age x and no "better" after age x.
 - \star If disability surveys do not cover earlier age intervals,

$$\{1 - E[\pi(s, y)]\}_{n} L_{x-n} \leq \int_{x-n}^{x} [1 - \pi(t, y)] l(t, y) dt \leq {}_{n} L_{x-n, y}.$$

* If disability surveys do not cover earlier age intervals,

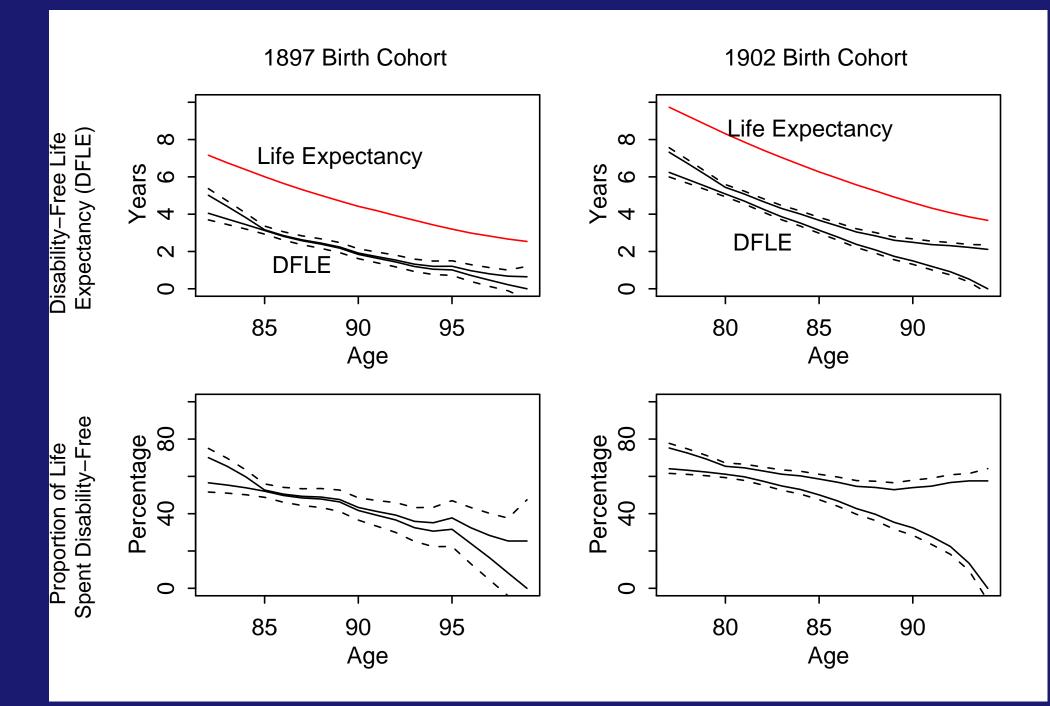
$$0 \leq \int_{\omega^* + n_{\omega^*}}^{\infty} [1 - \pi(t, y)] l(t, y) dt \leq \{1 - E[\pi(s, y)]\}_{\infty} L_{\omega^* + n_{\omega^*}, y}.$$

Empirical Analysis of U.S. Birth Cohorts

Empirical Analysis of U.S. Birth Cohorts

- Self-Reported Disability: at least one ADL.
- Data
 - ★ Mortality: 1988 to 2003 Death Counts (US Vital Statistics)
 - ★ Population: 1988 to 2003 Census Estimates (US Census Bureau)
 - ★ Disability: 1991 to 2003 US Medicare Current Beneficiary Survey

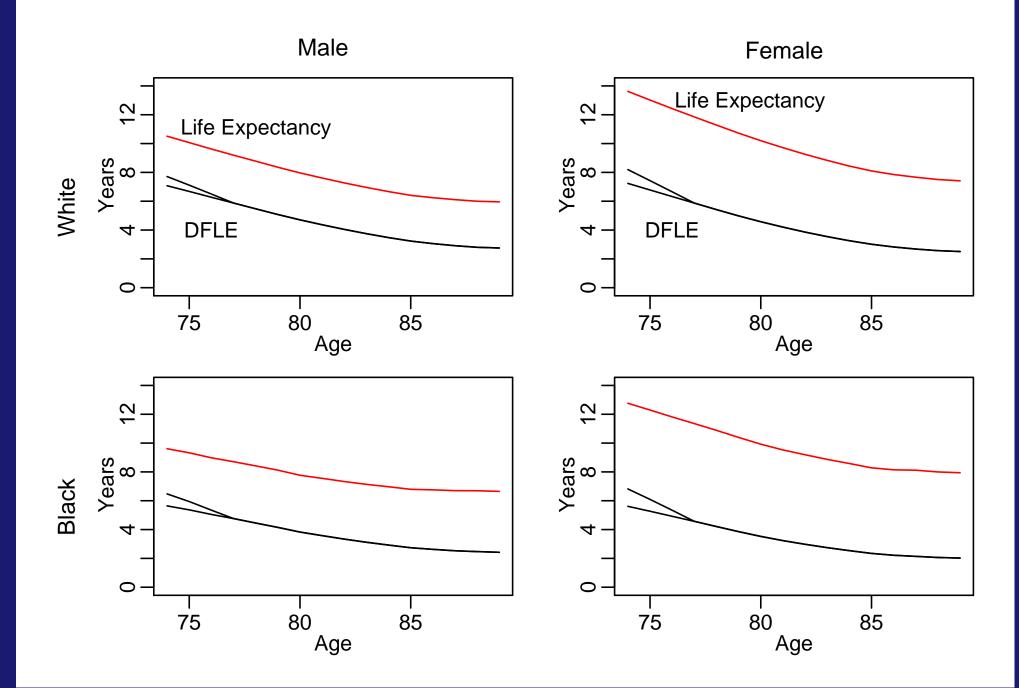
Empirical Analysis of U.S. Birth Cohorts

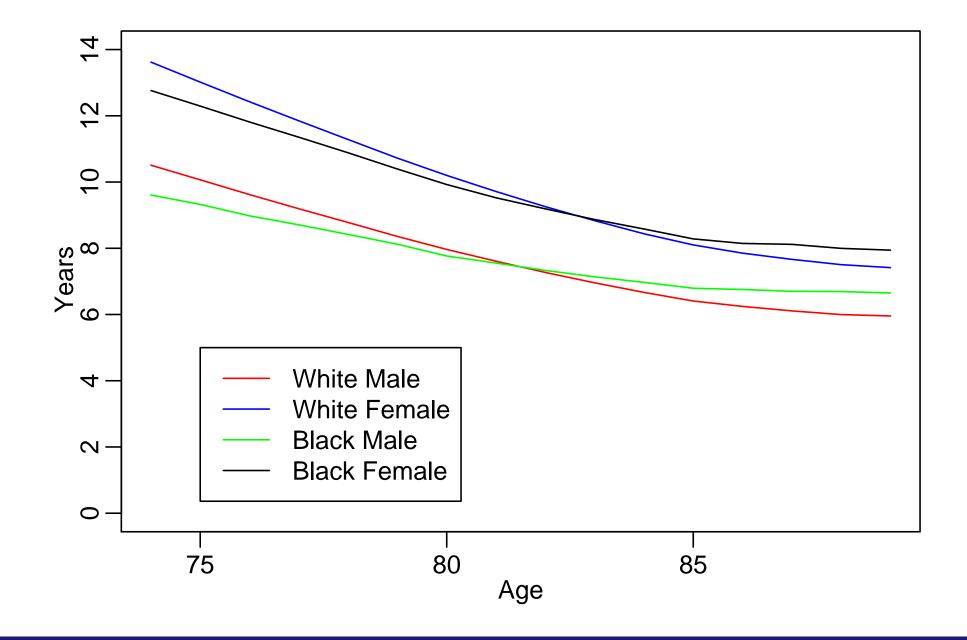

• Self-Reported Disability: at least one ADL.

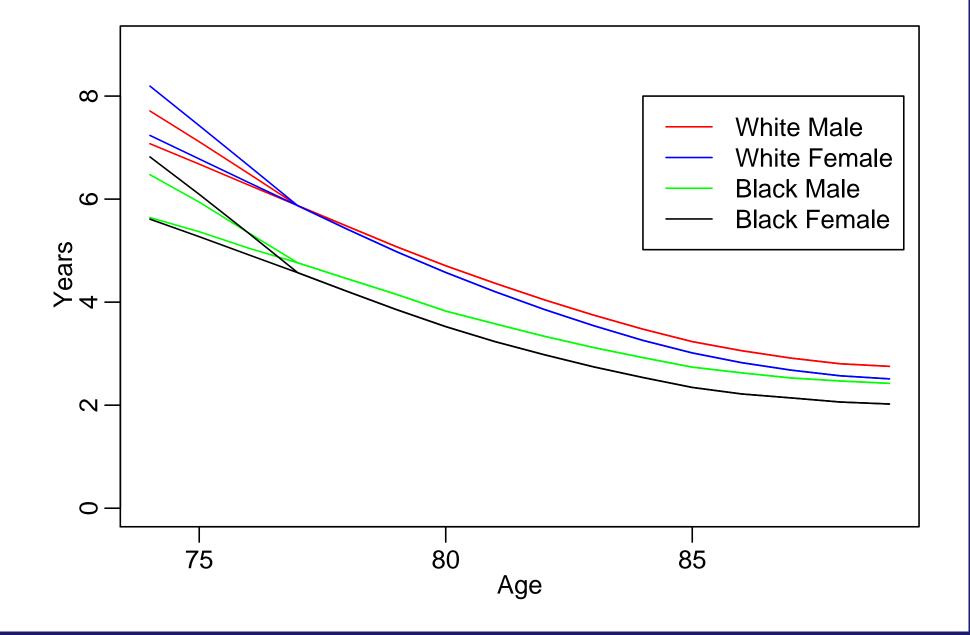
• Data

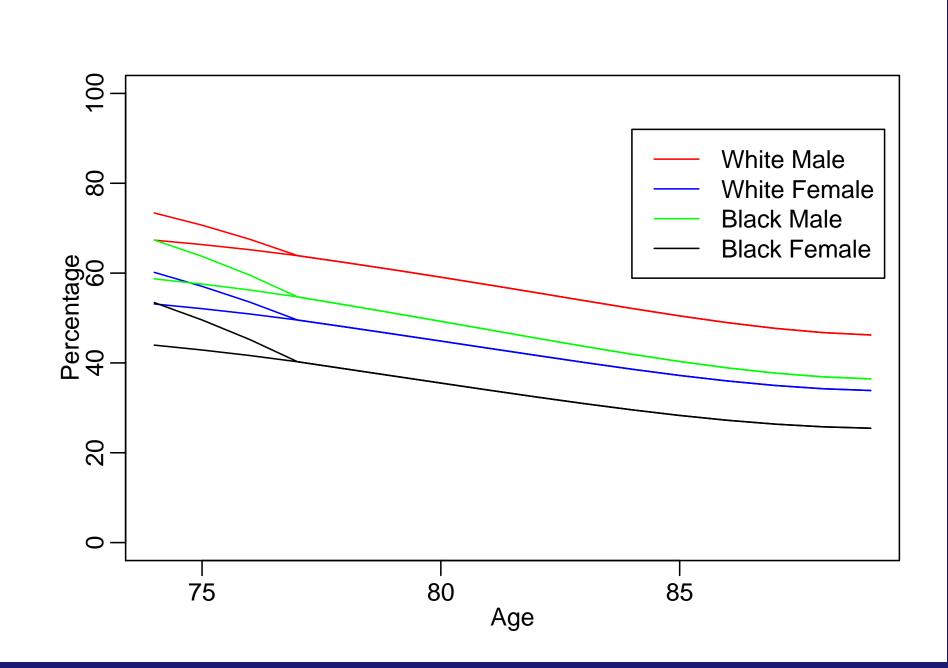
- ★ Mortality: 1988 to 2003 Death Counts (US Vital Statistics)
- ★ Population: 1988 to 2003 Census Estimates (US Census Bureau)
- ★ Disability: 1991 to 2003 US Medicare Current Beneficiary Survey
- Race: White and Black, without respect to Hispanic ethnicity.

	Mortality Data		Disability Data	
Birth Cohort	From	То	From	То
1897	91	106	94	106
1902	86	101	89	101
1914	74	89	77	89


Estimated DFLE and Proportion of Life Spent Disability-Free


Cohort (1902 Birth Cohort) Versus Period DFLE


Sex and Racial Disparities of the 1914 Birth Cohort


Life Expectancy, 1914 Birth Cohort

Disability-Free Life Expectancy, 1914 **Birth Cohort**

Proportion of Remaining Life Spent Disability-Free, 1914 Birth Cohort

• We establish a statistical foundation of Sullivan's method.

- We establish a statistical foundation of Sullivan's method.
- Under stationarity assumptions,
 - ★ Sullivan's estimator unbiased.
 - * Standard variance estimator consistent.

- We establish a statistical foundation of Sullivan's method.
- Under stationarity assumptions,
 - ★ Sullivan's estimator unbiased.
 - ★ Standard variance estimator consistent.
- Sullivan's method may be extended to cohort life tables.
 - ★ No stationarity assumptions required.
 - Avoid strong assumptions about transition probabilities in multi-state methods.

- We establish a statistical foundation of Sullivan's method.
- Under stationarity assumptions,
 - ★ Sullivan's estimator unbiased.
 - ★ Standard variance estimator consistent.
- Sullivan's method may be extended to cohort life tables.
 - ★ No stationarity assumptions required.
 - Avoid strong assumptions about transition probabilities in multi-state methods.
- Empirical analyses of birth cohorts show that DFLE may not have been increasing as fast as life expectancy has.

- We establish a statistical foundation of Sullivan's method.
- Under stationarity assumptions,
 - ★ Sullivan's estimator unbiased.
 - * Standard variance estimator consistent.
- Sullivan's method may be extended to cohort life tables.
 - ★ No stationarity assumptions required.
 - Avoid strong assumptions about transition probabilities in multi-state methods.
- Empirical analyses of birth cohorts show that DFLE may not have been increasing as fast as life expectancy has.
- Non-stationary mortality and disability yields significant cohort and period differences in DFLE, especially at older ages.

- We establish a statistical foundation of Sullivan's method.
- Under stationarity assumptions,
 - ★ Sullivan's estimator unbiased.
 - * Standard variance estimator consistent.
- Sullivan's method may be extended to cohort life tables.
 - ★ No stationarity assumptions required.
 - Avoid strong assumptions about transition probabilities in multi-state methods.
- Empirical analyses of birth cohorts show that DFLE may not have been increasing as fast as life expectancy has.
- Non-stationary mortality and disability yields significant cohort and period differences in DFLE, especially at older ages.
- While sex-specific mortality may exhibit a 'crossover' between races, DFLE and proportion of remaining life spent disability-free may not.