The Significance of Education for Mortality Compression in the United States

Dustin C. Brown, *University of Texas at Austin* Mark D. Hayward, *University of Texas at Austin* Jennifer Karas Montez, *University of Texas at Austin* Robert A. Hummer, *University of Texas at Austin* Mira M. Hidajat, *The Pennsylvania State University* Chi-Tsun Chiu, *University of Texas at Austin*

This research was supported by a research grant from the National Institute of Child Health and Human Development (R01 HD053696, P.I.: R. A. Hummer), a training grant from NICHD (5 T32 HD007081), and infrastructure grants from NICHD (R24 HD042849) and the National Institute on Aging (P30 AG17265).

POPULATION RESEARCH CENTER

Background

- Growing interest in whether mortality has become increasingly compressed
- Is there a biologically determined upper-limit to the human lifespan?
- Assumption: Temporal and national variability in mortality compression is due to socioeconomic development.
- If we extend this logic, then socioeconomic differentials in mortality compression should exist within a single nation in a given period.

POPULATION RESEARCH CENTER

Research Questions

- Are there educational differentials in mortality compression?
- Given women's lower mortality and smaller educational gradient, how do men and women differ in mortality compression?
- We hypothesize that mortality will be more compressed as education increases.
- We also hypothesize that highly educated women experience the greatest degree of mortality compression of all sex-education groups.

POPULATION RESEARCH CENTER

Data

- The Health and Retirement Study (HRS)
 - Nationally representative sample of the U.S. civilian, noninstitutionalized population ages 51 and above and their spouses
 - Longitudinal survey began in 1992
- Sample restrictions in our analyses:
 - Survey years: 1992-2004
 - Native born respondents ages 50+ without missing education data

POPULATION RESEARCH CENTER

Measures

- Dependent variable: whether death occurred (from any cause) during a calendar year
- Independent variables:
 - Exact age on January 1st
 - Sex (1 = Male, 0 = Female)
 - Education in years: 0-11 years, 12 years, and 13 years or more

POPULATION RESEARCH CENTER

Methods: Life Tables

- Sex-education specific life tables derived from statistical models of the risk of death
- Sex-specific mortality models were estimated that included exact age and education group
- Gompertz models were assumed for both men and women, and education was allowed to interact with age

$$\ln m_m(x) = \beta_{m0} + \beta_{m1} Age_x + \beta_{m2} Ed < 12 + \beta_{m3} Ed 12 + \beta_{m4} Age^* Ed < 12 + \beta_{m5} Age^* Ed 12$$

 $\ln m_{f}(x) = \beta_{f_{0}} + \beta_{f_{1}}AGE_{x} + \beta_{f_{2}}Ed < 12 + \beta_{f_{3}}Ed12 + \beta_{f_{4}}Age^{*}Ed < 12 + \beta_{f_{5}}Age^{*}Ed12$

where,

$$m(\mathbf{x}) = \lim_{\Delta \to 0} \frac{P(\mathbf{x} + \mathbf{x} + n)}{n}$$

POPULATION RESEARCH CENTER

Methods: Rectangularization

- We follow the approach recently introduced by Cheung, et al. (2005)
 - <u>Modal age of death</u>: The age corresponding to the largest value in the I(x) series of the life table (M)
 - <u>Mortality compression</u>: The standard deviation above the modal age of death (SD(M+)) and ages of death within plus or minus 3 standard deviations of the modal age of death (M+/-3SD(M+))
 - <u>"Verticalization"</u>: The verticality of the right-hand tail of the survival curve. This is a right angle with a range of 0° to 90° (i.e., smaller values = more vertical, larger values = less vertical).

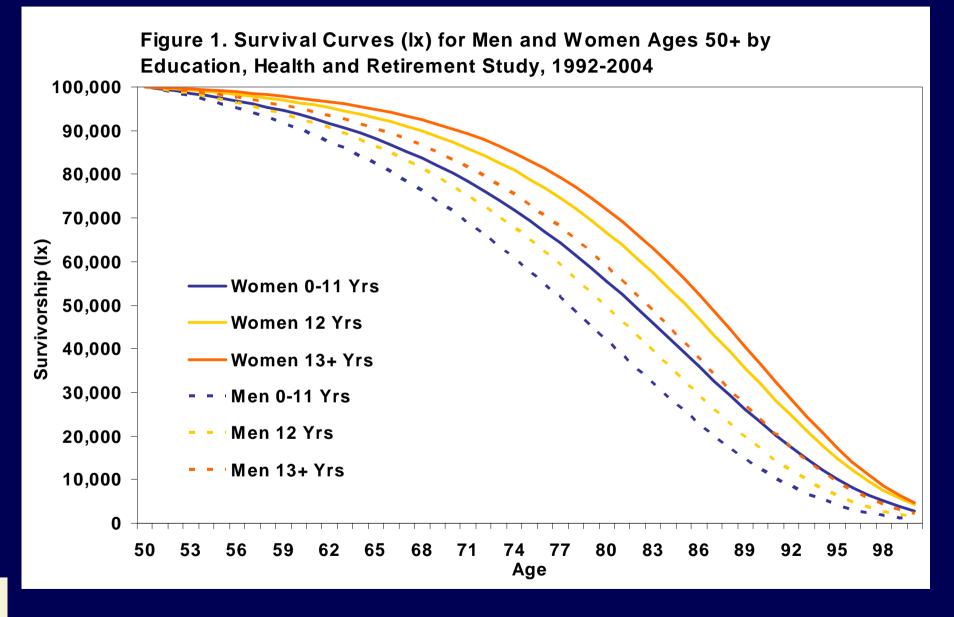
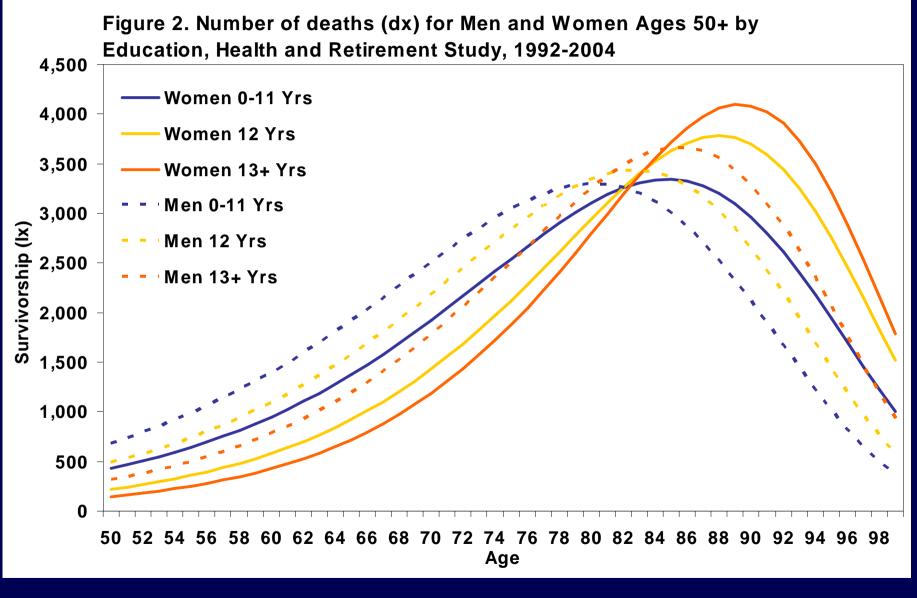

POPULATION RESEARCH CENTER

Table 1. Number of Deaths by Sex and Education, HRS, 1992-2004


	Total		<u>Ages 90+</u>	
	Men	Women	Men	Women
0-11 Years	1,413	1,624	189	340
12 Years	854	999	50	118
13+ Years	849	479	67	148

POPULATION RESEARCH CENTER

POPULATION RESEARCH CENTER

POPULATION RESEARCH CENTER

Table 2. Dispersion Around the Modal Age at Death & theDegree of Verticalization by Sex & Education, HRS, 1992-2004

		Education		
	0-11 Yrs	12 Yrs	13+ Yrs	
Men				
Modal age at death	80.65	83.21	85.99	
Standard Deviation	8.10	7.48	6.26	
Verticalization	23.74	22.39	20.53	
<u>Women</u>				
Modal age at death	85.20	88.46	89.77	
Standard Deviation	7.07	5.59	4.87	
Verticalization	22.33	19.41	17.58	

POPULATION RESEARCH CENTER

Conclusion

- Educated groups have higher modal ages of death than less educated groups.
- Mortality is more compressed among groups with higher levels of education (e.g., smaller standard deviations).
- The right hand tails of the survival curves are more vertical among groups with higher levels of education (e.g., smaller values).
- Women live considerably longer and display more mortality compression than men at all levels of education
- The group with the greatest compression of mortality is highly educated women

POPULATION RESEARCH CENTER

Conclusion

- Educated populations have greater access to resources which allow them to optimize their health.
- Women are more advantaged than men, especially at higher levels of education.
- Mortality among the socioeconomically advantaged provides a glimpse into the mortality dynamics of the population as a whole in the future.
- We have replicated these results with the National Health Interview Survey Linked Mortality Files (NHIS-LMF).
- Our next step is to use the SPACE program to obtain confidence intervals for the rectangularization measures.

POPULATION RESEARCH CENTER