
Speaker’s notes 

Dia4:  

The concrete objective of our study was construction of a model of the dynamics of functional health 

based on National Population Health Survey data.  This was accomplished by modeling each component 

attribute of the Health Utility Index:  a generic index of functional health status.  The HUI is based on 

eight attributes: vision, hearing, speech, mobility, dexterity, cognition, emotion, and pain. 

Want to emphasize here that we are concerned with FUNCTIONAL HEALTH STATUS – that is with degree 

of proficiency / functioning on the 8 attribute dimensions.  As such, our intuitions regarding, for example, 

underlying disease states or chronic conditions may not apply here; unless a disease or chronic condition 

is closely linked with proficiency / functioning . 

The degree of proficiency has been measured using sets of simple questions that, for example, 

determine whether a respondent requires eye-glasses or lenses to correct his/her vision. 

Finally, Functional Health status is an essential component of Health Adjusted Life Expectancy – a key 

summary health indicator and one whose dynamics and distribution is the fundamental objective of this 

study. 

Dia5:  

n.b. this is more ambitious than usual statistical analysis where the “dependent variable” is a scalar.  In 

this analysis, the dependent variable is a set of relationships – a representative sample of cohort health-

adjusted life lengths (HALLs) underlying (microanalytically, not Sullivan method) HALE = Health-Adjusted 

LE 

Dia6: 

This diagram illustrates calc’s for both conventional life expectancy, LE, and the extension to HALE.  

Conceptually, HALE = generalization of a conventional survival curve; life expectancy is simply the area 

under the curve.  But this standard LE calculation implicitly treats every person-year of life of this birth 

cohort as exactly identical.  i.e.  takes no account of variations in health among the living.  These 

variations are represented in the diagram by the various shadings of gray beneath the survival curve -- a 

darker shade implying a worse health state. 

Could define a threshold level of health below which individuals ≡ “not healthy”, or as disabled, and then 

compute the area under this lower survival curve, shown in blue – often called “disability-free” life 

expectancy (DFLE).   

But dichotomization of individuals’ health status is too rough.   Better approach is to compute the area 

under the survival curve weighted by the lightness or darkness of the shading.  A year of life in full health 

counts as a 1, while a year of life in much poorer health would count as a 0.3, say.  Result of this 



weighted calculation is HALE –  most appropriate summary measure for assessing progress in population 

health. 

n.b. all of this so far can be done with semi-aggregate / life table methods; but much better to do 

microanalytically – using individual HALLs and LLs, which is what the HealthPaths model, to be described, 

does 

Dia7:  

The health of the youngest (under 10), as assessed by the HUI, is characterized by perfect or near perfect 

health.  At succeeding ages, the proportion at or near perfect health declines and the range of HUI over 

which the remainder of the population is distributed increases.  These basic facts can be seen in 

empirical distribution functions for each of the 10-year age groups.   

HUI appears to provide a highly plausible description of the affect of aging on population health.  

However, our concern here will be with the harder problem of providing a realistic description of 

individual health trajectories / dynamic life cycle profiles in terms of an appropriate set of equations and 

then going beyond that to determine the general properties of those equations using microsimulation.  

Dia8:  

We use the ordinal character of each HUI attribute together with the continuous time simulation facility 

of ModGen – our software environment  - to construct a parsimonious model: 16 equations rather than 

240.  This simplification relies on an interpretation of differences in attribute states between interviews 

as reflecting a process of incremental change.  It is the two year interval between interviews that 

accounts for the comparisons of vision involving observations at t and at t+2.  

Vision  Ordered Categories  

1.     No visual problem  

2.     Problem corrected by lenses  

3.     Problem seeing distance - not corrected  

4.     Problem seeing close - not corrected  

5.     Problem seeing close and distance - not corrected  

6.     No sight at all 

Dia9:  

The explanatory component of our model was built up from a selection of proxies that – hopefully – 

cover an appropriate range of influences on health. 

Education, Daily Smoking (including cumulative smoking years) and BMI are familiar covariates.   



The psycho-social factor ‘Sense of Coherence’ is less familiar.  It is a standardized scale that attempts to 

measure an individual’s capacity to cope with stress.  

Most social scientists would never use the term ‘proxy’; instead they use terms like ‘variable’ or 

‘construct’.  But, we use ‘proxy’ in order to emphasize that there is undoubtedly much more underlying 

complexity than can be captured in any given small set of variables.  

Dia10:  

The relations that constitute our model are represented here over 3 cycles of the NPHS. There are two 

types of relations acting over a given span of time: 

Intrinsic relations: where incremental change in any HUI attribute may be influenced by any other 

attribute or lagged attribute. 

Extrinsic relations: where incremental change could also be influenced by Age, Education, Smoking, BMI, 

& Coherence.  Change in each of these extrinsic factors are themselves influenced by the past – including 

feedback from lagged HUI.   

Finally, the relation between mortality and health is expressed as an age-sex-specific relative risk as a 

function of HUI. Simulated HUI can be derived (using the weighting algorithm) from its underlying 

simulated attributes / dimensions. 

In the equations specifying attribute change hazards, these relations imply a complex set of candidate 

covariates: 

• lagged and cross-lagged effects of each attribute level on chances of attribute change implies 80 

coefficients per equation; 

• extrinsic effects and interactions with age add an additional 174 coefficients per equation; 

• interactions of all those covariates with sex and three broad education levels add a further 804 

coefficients per equation 

This brings the candidate total for each of the 16 hazard equations to 1072 coefficientsDia:  

Dia11:  

These hazard regressions have been estimated using the Forward Stagewise Regression Algorithm, which 

is astonishingly simple.  It consists of an iterative process, a succession of small steps in each of which the 

covariate most strongly associated with the working residuals is identified and its coefficient is 

incremented (or decremented) by a small amount. 

Because the algorithm only requires inspection of a vector of association measures, the number of 

covariates is limited only by the memory or data storage available.  It can easily handle the 1072 

candidate covariates included in the hazard equations for change in HUI attributes. 



In addition to accommodating large numbers of candidate covariates (possibly many more than the 

available sample size), the Stagewise Algorithm effectively chooses a model.  That is because, using an 

appropriate termination rule, many coefficients will be left at the initial value of zero.  The set of non-

zero coefficients represent the selected model, which may vary from sample to sample. 

We have used a simple Poisson likelihood for this stage of estimation.  

Dia13:  

In working with our model, bootstrapping is made to play three roles: 

First, bootstrap weights provide a convenient partition of the sample into two parts: one part that can be 

used for estimation and one part that can be used to prevent over-fitting by monitoring out-of-sample 

prediction error.  In general, just over 1/3 of PSU’s that are left out of a given bootstrap. 

Second,in this application, bootstrapping provides an estimate of coefficient variance that includes 

model selection variance.  

Third, bootstrap simulation will be used (beyond the estimation process) to quantify variance in 

simulation outputs by means of replicate simulations based on equations estimated from separate 

bootstrap samples.  

Dia14:  

Here’s an illustration of our use of the Forward Stagewise Algorithm. This illustration uses a special small 

version of the Worse Vision Equation.  As, there were only about 300 terms in this illustrative equation, it 

was possible to estimate the full unrestricted form of the equation using SAS Proc GENMOD. 

The chart displays (for one bootstrap sample) the difference between the Out-of-Sample Error from the 

Forward Stagewise Regression and the Out-of-Sample Error from the corresponding Full Equation. 

Out-of-Sample Error corresponds to the Poisson Deviance calculated using the portion of the data that 

was not included in this particular bootstrap sample, i.e. had zero weight. 

The difference between errors is positive when the Forward Stagewise Regression is inferior and 

negative when the Full Equation is inferior. 

It took about 350 steps to find a model that had minimal prediction error; and this model was clearly 

superior to the Full Equation. 

In estimating the hazard equations that were used in the simulations, we terminated the Forward 

Stagewise algorithm as soon as the prediction error began to increase.   

Then, as a final step, a log-normal person-specific error variance was estimated, holding the Stagewise 

coefficients fixed.  



Dia15:  

The process of estimating an equation using the Forward Stagewise Algorithm to minimize prediction 

error can be repeated with many bootstrap samples. 

The result is multiple sets of estimates that together display the combined effects of variance in 

estimation and of model selection uncertainty.  This represents a significantly more general evaluation of 

total uncertainty than is usually available. 

This strategy – replicating model selection with different bootstrap samples - moves us closer to 

understanding the “total error” in statistical analysis: an as yet little recognized benefit of the bootstrap 

weights that Stat Can has been releasing with an increasing number of its surveys.  

Dia16:  

In the applied microsimulation world, the usual approach is to plug-in the best parameter estimates, and 

then to simulate the implied outputs.  Often ‘calibration’ or ‘alignment’ is then needed to ensure that 

the results can pass basic validity tests; for example, approximating historical benchmarks given 

appropriate settings. 

Our use of the same set of bootstrap samples for estimation of each equation (both Attribute Change 

and Covariate equations) permitted a novel approach to simulation -- what might be called Bootstrap 

Simulation. 

We use many bootstrap estimates of our parameters to produce many simulated outputs, which leads to 

an direct estimate of the expected value of that output. 

Since simulated outputs will often be a non-linear function of the parameters, the expected value of the 

outputs will generally not be simulated using the conventional approach. 

Dia18:  

As evident from the description of the NPHS analysis, the data show important connections among 

several of the variables.  As a result, a rigorous scientific approach requires that we need to think in 

terms of a “complex web of causality”, as emphasized by Nancy Krieger. 

This diagram shows one way to visualize such a complex web.  The grid of “blobs” represents an 

individual’s stylized biography 

n.b. health status shown as rectangle since it is an index based on 8 underlying dimensions; circles 

represent single variables 

The causal web is indicated by the many arrows connecting different blobs, with only a few of all the 

possible arrows shown (only those of first order, i.e. no 2+ period lags), and no indication is given of the 

quantitative strength along any of the arrows . 



One of the holy grails of longitudinal surveys is precisely to estimate which of these arrows is significant, 

and then to quantify the strength of the specific pathway.  But in this HealthPaths analysis, our objective 

is much more ambitious – we seek to quantify the entire network of relationships indicated in this 

diagram, and then draw out their joint implications 

Dia19:  

The HealthPaths microsim model is written in Stat Can’s ModGen, and draws inspiration from many 

years of experience with two other models – POHEM and LifePaths. 

Simulation goes one individual at a time, with the birth of a synthetic individual.  The individual is aged 

by being exposed to the health transition patterns of the Canadian population, whose estimation from 

the NPHS has just been described. 

n.b. shows 2
nd

 order Markov – this is a compromise: better than 1
st

 order, but higher order likely also 

significant; on the other hand, with 2
nd

 order, still have enough longitudinal data to estimate individual 

effects – i.e. represent individual heterogeneity, which turns out to be significant 

n.b. this image gives impression of discrete time, but in fact we use continuous time, since transitions 

(among discrete states) are modeled in terms of waiting time distributions  

Dia20:  

Process is repeated many times to create a large sample – 2 million in simulations to be shown – of such 

synthetic individuals (replicants?)   

Simulation sample size is made large enough to ensure that Monte Carlo error, from the use of random 

numbers, is small relative to the model outputs of interest. 

Dia21:  

HealthPaths works with overlapping birth cohorts embedded in real calendar time.   

However, for results to be shown, focus is on 1960 birth cohort – n.b. empirical dynamics do not have 

time subscript; i.e. patterns of dynamics (hazard rates) are assumed constant over time 

First step will be to simulate our base case scenario for this cohort 

Dia22:  

Once we have a base case scenario that is our best estimate of the history of the 1960 birth cohort, and 

our best judgment of this cohort’s projected future, then our virtual (in silico) lab apparatus is ready for 

use.  Key method we are using is to “knock out” one or a group of the empirically observed connections, 

re-run the simulation, and see what difference it makes.  This approach is very much akin to the 

knockout mouse models used in genetic research.  But I think it is very novel in social and health science 

research.  The power of microsimulation is that it gives us the required tool. 



As noted in this diagram, this analysis is still in part illustrative, a proof of concept.  So we have chosen to 

look at only a few key variables (a spider with rather limited vision, in Nancy Krieger’s terms). 

Health status is very richly characterized in the NPHS using the McMaster HUI, with its underlying 8 

dimensions;  smoking and obesity (measured by BMI – n.b. self-reported) are obvious factors. 

There is also a great deal of evidence re SES factors; we’ve chosen educational attainment because, e.g. 

compared to income, it saved us quite a bit of work as we could avoid modeling income as a co-evolving 

individual characteristic. 

Dia23:  

Finally, as a bit of a flyer, we included Antonovsky’s Sense of Coherence scale.  This is likely not very well 

known, but was included on the NPHS as an exploratory variable.  It has not been used much by 

researchers analysing the NPHS, and we thought it would be good, since our decision in 1993 to include 

it in the NPHS, to see if it was at all important in this kind of analysis. 

In sum, the SoC is designed to measure the extent to which individuals feel their life is comprehensible, 

manageable, and meaningful.  The quote is from Antonovsky himself, who died prematurely in the 

1990s, just as the health promotion community was beginning to embrace his concept of salutogenesis – 

the factors driving good health, rather than those driving disease. 

Dia24:  

So here is the first of our results, for the base case scenario.  Overall, HALE for men in this cohort is 

projected at 66.5 years, and for women 71.9. 

Because of the very sophisticated way the network of equations was estimated using the set of 

bootstrap weights, we have run each simulation 40 times in order to have direct estimates of the 

bootstrap uncertainty.  Let me emphasize that this uncertainty is far more inclusive than the usual kind.  

Monte carlo error is here, but with 2 million cases, it has been reduced to 0.2. or 0.3 years. 

The sampling error of the regression coefficients is here.  But in addition we have explicitly taken account 

of any correlated errors across the estimated equations, as well as specification errors based on the 

iterations on out-of-sample predictive accuracy. 

The rest of the graph shows the 9 decile cut points in the distribution of HALLs for men and women 

n.b. turning on its side, like a survival curve, but of HALLs rather than LLs (recall earlier graph) – so extent 

of variation not at all surprising 

n.b. also, this is NOT our preferred idea of health inequality, in contrast to Julian LeGrand and Chris 

Murray et al 

Dia25:  

While it is trickier to do, this graph is our best attempt to show the joint distribution of LLs and HALLs 



e.g. the longest line to the right is for individuals who lived to age 100+.  The dist’n it shows is for the 

HALLs of this long lived sub-population – e.g. most (over 3%) of those with LLs of at least 90 lived with 

HALLs about 10 years less than their LLs. 

If we focus on age 60, or 65, and go up a vertical grid line, we see that the proportions with HALLs at 

these ages increases as the LLs fall – showing that those who are in poorer health at age 60 or 65 have 

shorter LLs on average. 

And for those with LLs up to age 35, the graph shows that virtually all their HALLs = their LLs, i.e. they 

essentially experience sudden death. 

Dia26:  

This graph explores the relative importance of each of the 8 dimensions of health status underlying the 

summary health index. 

Basically, each dimension was set to its best “full health” level, one at a time, and the base case 

simulation was rerun. 

Doing these experiments with speech and dexterity had virtually no effect, indicating that problems with 

these dimensions of health status were either not very prevalent, or not given much weight in the tariff 

or valuation function used to do the aggregation, or both. 

On the other hand, cognition was most important, followed fairly closely by pain and emotion for men, 

and pain, emotion and vision for women. 

Hypothetically eliminating the effects of cognitive decline for the 1960 birth cohort would increase HALE 

by over 5 years for men, and over 4½ years for women. 

Dia27:  

By far the most important factor associated with health status dynamics is chronological age  This is 

illustrated here with a trio of simulation experiments where we hypothetically set individuals to have the 

transition dynamics of an always 20 year old, an always 50 year old, and an always 80 year old. 

The base case scenario is close to that of the always 50 year olds. 

Dropping age to always 20 adds about 5 years to HALLs, while increasing age to always 80 has a much 

more dramatic effect – reducing HALLs by up to 40 years. 

Interestingly, the always 80 year old scenario results in a much wider spread of HALLs across the deciles.  

The intuition here is that at higher ages, the extent of transitions among health states is greater.  

Recall that all these simulations include information on 2
nd

 order Markov, i.e. two period lagged, 

relationships.  Essentially, at ages 50 and younger, there is much less likelihood of a deterioration in 

health status, so individuals’ HALLs “smear out” to a much lesser extent. 



Dia28:  

There is ubiquitous evidence of the important role of SES as a determinant of health.  So we were keen 

to do a “knock out” experiment using our SES covariate, educational attainment. 

This graphs shows the hypothetical effects as if everyone either never completed high school (Low Ed), 

or everyone not only completed high school, but also a first university degree as well (High Ed).  The base 

case is shown by the dashed lines. 

The effects are not as great as those associated with age, but they are considerable.  They are also 

asymmetric 

– an improvement in educational attainment has a much smaller effect than a reduction, on the order of 

one versus five years; and  

– the effects of educational attainment are greater in the lower deciles of HALL 

Dia29:  

There is ubiquitous evidence of the important role of SES as a determinant of health.  So we were keen 

to do a “knock out” experiment using our SES covariate, educational attainment. 

This graphs shows the hypothetical effects as if everyone either never completed high school (Low Ed), 

or everyone not only completed high school, but also a first university degree as well (High Ed).  The base 

case is shown by the dashed lines. 

The effects are not as great as those associated with age, but they are considerable.  They are also 

asymmetric 

– an improvement in educational attainment has a much smaller effect than a reduction, on the order of 

one versus five years; and  

– the effects of educational attainment are greater in the lower deciles of HALL 

Dia30:  

Here they are, men at the top for the 4 scenarios, women at the bottom. 

First impressions are that smoking has the largest impact, but remember there are only two scenarios in 

this case – status quo versus everyone always a never smoker.  So the more appropriate comparison is 

the range from low to high HALE 

Dia31:  

The “braces” here indicate these more relevant ranges.  We were certainly surprised to see that SoC has 

the greatest impact.  This finding merits further exploration.  It does fit with the earlier finding that 

among the 8 dimensions of health status underlying these results, cognition was most important. 



We were not as surprised to see the smallest impact for BMI, notwithstanding all the public discussion of 

the “obesity epidemic”.  Other studies from the NPHS as well as NHANES (esp. Flegel et al.) have already 

shown that the RR curve actually has a minimum in the “overweight range” between 25 and 30 rather 

than in the “normal weight” range of 20 – 25. 

Education and smoking are in between in their impacts – accounting for … 

Dia32:  

Let me conclude with the general caveat that these results are brand new and should be taken as 

exploratory and tentative. 

They do demonstrate not only the feasibility but also the power of the novel statistical methods we have 

used for estimating our coherent network of health status and co-evolving risk factor dynamics – 

drawing on the fortuitous set of bootstrap weights that are part of the NPHS (and CCHS). 

The results also demonstrate the benefits of a close coupling of the program of empirical estimation and 

model construction. 

HealthPaths illustrates an extension of microsimulation methods for epidemiology and health policy 

potentially of the same order of importance as the knockout mouse model in genetics. 

And it illustrates the feasibility and salience of HALE and its related family of health indicators. 

The substantive results are certainly provocative – the importance of smoking and education is in line 

with previous research, but the relative weakness of BMI and the unexpected strength of the role of SoC 

are perhaps surprising. 

Finally another caveat concerns the sampling variability of these results – it is quite high, but it must be 

remembered that it includes far more sources of variation than is typical in these kinds of analysis. 

Thank you 


