Are there education differentials in disability and mortality transitions and active life expectancy among older Japanese adults?

Findings from 1999-2009 NUJLSOA

Vanessa Yong & Yasuhiko Saito, Nihon University

22nd Annual REVES Meeting 19-21 May 2010, Havana, Cuba

Previous Research

- Mainly in Western countries
 - Consistent evidence for a strong association between education and health and mortality
 - Better educated people have:
 - better health; fewer disabilities
 - less likely to transit to worse health; more likely to recover
 - longer lives; more years of active life
 - Regardless of data sets, health measures, analytical methods used; time periods, age groups studied

Few Studies on Asia

- Unclear or mixed findings
 - Japan (Liu et al. 1995)
 - Taiwan (Zimmer et al. 1998)
 - China (Gu & Zeng 2004; Liang et al. 2001)
 - Indonesia (Hidajat et al. 2006; Kaneda & Zimmer 2007)
 - the Philippines (Cruz et al. 2007)
- Mostly did not compute ALE by educational levels

Asian Studies

Educational effects on transition from:	Active- Inactive	Active- Dead	Inactive- Active	Inactive- Dead
Japan	*	*	ns	ns
Taiwan	*	ns	ns	ns
China	ns	ns	*/ns	ns
Indonesia	*/ns	*/ns	ns	ns
Philippines	ns	ns	ns	ns

* significantly differentns not significantly different

Aims of Study

- To examine the effects of education on disability and mortality transitions; and
- To compute active life expectancy by education for older Japanese men and women

Some Causal Pathways

• Behavioral-related Factors

 Smoking, dietary habits, physical activities, knowledge of and access to health information

- Material-related Factors
 - Housing conditions, employment status, occupation, income, access to health care
- Life course effects; cohort effects

Conceptual Framework

Data

- Nihon University Japanese Longitudinal Study of Aging (NUJLSOA)
- 5 waves of panel data: 1999, 2001, 2003, 2006, and 2009
- Nationally representative sample of age 65+ in 1999
- Oversampled for age 75+

Data (cont.)

Waves Year	W1 1999	W2 2001	W3 2003	W4 2006	W5 2009
Sample size*	4997	3992	3418	2520	1861
Deaths		327	370	450	287
Response rate	74.6%	86.4%	82.1%	82.3%	85.2%

* For panel data only. Refreshed samples in 2001 and 2003 were omitted from the analyses. About 10% at each wave is by proxy-interviews with family members.

**Response rate includes deaths and some of those who didn't answer previous interviews.

Data (cont.)

- Sample size for analyses (n=4,968)
 - Men= 2,107 Women= 2,861
- Excluded:
 - Missing education variable (24 cases)
 - Missing initial functioning state (5 cases)
- Date of death (DOD) were obtained from family members and municipal records
- Missing DOD were coded as at mid-point of the survey interval (40 cases)

Health Measure

- <u>Inactive</u>: difficulty performing at least one of 7 ADLs or 7 IADLs
- <u>Active</u>: otherwise
 - 7 ADLs: bathing, dressing, eating, getting in/out of bed, walking, going outside, toileting
 - 7 IADLs: preparing for own meal, shopping, managing money, making phone calls, doing light housework, using transportation, taking medication

Education Measure

- Dichotomized by level of education based on observed distribution
 - –Less than High School (≤ 9 years of schooling) *
 - <u>High School and above</u> (10+ years of schooling)
 - * less than 1% had < 6 years of schooling

Sample distribution by education and sex

	Less than HS	HS and above	Total
Men	1325	782	2107
	(60.2%)	(39.8%)	(44.0%)
Women	1966	895	2861
	(65.5%)	(34.5%)	(56.0%)
Total	3291	1677	4968
	(63.2%)	(36.8%)	(100.0%)

Proportions shown are for the weighted sample

Method

- Multi-state life table (MSLT) method by sex
 - Population-based and Status-based estimates by educational level
- IMaCh used to obtain transition probabilities and compute active life expectancies
 - To handle different interval lengths between surveys (1999, 2001, 2003, 2006, 2009)
 - Annual probabilities were estimated (stepm=12)

RESULTS

Distribution of health transitions

	End state					
	Active	Inactive	Dead	Total		
Initial state	Le	ess than high	school			
Active	4751	1011	391	6153		
Inactive	415	1415	652	2482		
Total	5166	2426	1043	8635		
	High school and above					
Active	3125	390	181	3696		
Inactive	164	452	195	811		
Total	3289	842	376	4507		

Active to Inactive (worsening health)

Inactive to Active (improving health)

Population-based estimates

	Age	TLE	95% CI	ALE	95% CI	IALE 95% CI	ALE/TLE(%)
Men							
less than high	65	18.4 (17.6-19.2)	14.7	(14.0-15.4)	3.7 (3.3-4.1)	80.0
school	85	5.9	(5.3-6.4)	2.9	(2.5-3.3)	3.0 (2.5-3.4)	49.5
high school &	65	20.5(19.4-21.5)	17.3	(16.3-18.2)	3.2 (2.7-3.6)	84.6
above	85	6.6	(5.9-7.4)	4.1	(3.5-4.8)	2.5 (2.0-3.0)	61.9
Women							
less than high	65	22.3 (21.6-23.1)	15.9	(15.3-16.5)	6.4 (5.9-6.9)	71.2
school	85	7.4	(6.8-8.0)	2.4	(2.1-2.7)	5.0 (4.5-5.5)	32.4
high school &		•	23.2-25.8)	18.4	(17.6-19.3)	6.1 (5.1-7.0)	75.3
above	85	9.1	(8.0-10.1)	3.7	(3.2-4.3)	5.3 (4.4-6.3)	41.2

Totals may not add up exactly due to rounding

Status-based estimates: Active at age 65

	TLE	95% CI	ALE	95% CI	IALE	95% CI	ALE/TLE(%)
Men							
< HS	18.5	(17.8-19.3)	15.0 (2	14.3-15.6)	3.6	(3.2-4.0)	80.8
HS+	20.6	(19.5-21.6)	17.5 (2	16.6-18.4)	3.1	(2.6-3.6)	85.0
Women							
< HS	22.4	(21.6-23.1)	16.1 (2	15.5-16.6)	6.3	(5.8-6.8)	71.7
HS+	24.5	(23.2-25.8)	18.5 (2	17.7-19.4)	6.0	(5.1-6.9)	75.6

Totals may not add up exactly due to rounding

Status-based estimates: Inactive at age 65

	TLE	95% CI	ALE	95% CI	IALE	95% CI	ALE/TLE(%)
Men							
< HS	16.0 (14.7-17.3)	9.7	(8.2-11.1)	6.3	(5.5-7.1)	60.4
HS+	17.1 (15.3-18.9)	11.6	(9.6-13.5)	5.5	(4.7-6.4)	67.6
Women							
< HS	20.7 (19.7-21.7)	11.8	(10.7-12.8)	8.9	(8.2-9.7)	56.8
HS+	23.1 (2	21.6-24.6)	14.3	(12.9-15.7)	8.8	(7.6-10.0)	61.9

Totals may not add up exactly due to rounding

Comparison of status-based estimates

Summary: Transition Probabilities

Education Differentials in Health and Mortality Transitions	Men	Women
Active to Inactive (worsened health)	*/ns	*
Active to Dead (transit to death)	ns	ns
Inactive to Active (improved health)	ns	ns
Inactive to Dead (transit to death)	ns	ns

* p<0.05 ns: not significant

Summary: ALE at age 65

Education differentials in:	Men	Women
Population-based		
TLE	*	*
ALE	*	*
IALE	ns	ns
Status-based (initial active state)		
TLE	*	*
ALE	*	*
IALE	ns	ns
Status-based (initial inactive state)		
TLE	ns	ns
ALE	ns	*
IALE	ns	ns

Discussion

- Generally, little effect of education
- Possible reasons:
 - Universal access to health care in Japan
 - High health literacy and concern among Japanese regardless of educational levels
 - Annual health exams required by all ...
 - Negligible migrant population; mostly homogeneous
 - Generally, lower inequality among this study population; emphasize on egalitarianism and cooperation
 - Diet and nutritional intake less differentiated

Limitations/Areas for further study

- unable to adjust for clustering of observations
- Attrition
- Missing values
- Definition of health
- Introduction of other covariates

Acknowledgement

 This study was supported by a grant obtained by the Nihon University Population Research Institute from the "Academic Frontier" Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2006-2010.