### Spousal Education and Mortality in the United States

**Dustin C. Brown** 

Mark D. Hayward

**Robert A. Hummer** 

Department of Sociology Population Research Center University of Texas at Austin



This research was supported by a research grant from the National Institute of Child Health and Human Development (R01 HD053696, P.I.: R. A. Hummer), a training grant from NICHD (5 T32 HD007081), and infrastructure grants from NICHD (R24 HD042849) and the National Institute on Aging (P30 AG17265).

**POPULATION RESEARCH CENTER** 

# Background

- Education and mortality share an inverse association at the individual-level.
- The married have a lower risk of death than the never-married, widowed, and divorced.
- Relatively few studies examine the link between a spouse's education and one's own risk of death, particularly in the U.S.
- The family is the most immediate and salient context in which social factors mediate a person's exposure to health risks.
- The characteristics of other family members likely have ramifications for the health of others in the household.



**POPULATION RESEARCH CENTER** 

### **Theoretical Perspectives**

Two broad theoretical perspectives linking spousal education and health and/or mortality emerge from prior studies:

- <u>Household Resource</u>: Material and non-material resources at the individual-level are pooled within a marriage to become resources at the *household* or *family-level*
- <u>Status Inconsistency</u>: Status discrepancies between spouses that are inconsistent with broader social norms initiate the following general process:

Role Conflict  $\rightarrow$  Stress  $\rightarrow$  Poor Health  $\rightarrow$  Death



**POPULATION RESEARCH CENTER** 

### **Previous Research**

- The household resource perspective generally is supported in recent studies from Europe and Israel.
- Results of studies from the U.S. are mixed:
  - The status inconsistency perspective is supported by several older, non-representative U.S. studies.
  - No link between spousal education and mortality is found in a few more recent, nationally-representative U.S. studies



**POPULATION RESEARCH CENTER** 

### **Research Questions**

- Is a spouse's education linked to his/her partner's risk of death net of his/her own education?
- How are discrepant levels of education between spouses associated with each partner's risk of death?
- Are there gender differences in the association between spousal education and the risk of death?



**POPULATION RESEARCH CENTER** 

### Data

- National Health Interview Survey Linked Mortality Files (NHIS-LMF)
  - NHIS is a nationally representative cross-sectional survey of the U.S. non-institutionalized civilian population ages 18+
  - NHIS is linked to death records in the U.S. National Death Index (NDI) to create NHIS-LMF
- Sample:
  - NHIS survey years 1986-1996 linked to NDI from 1986-2002
  - Ages 50-84 at interview
  - Non-Hispanic white
  - Currently married at interview
  - Household reference person of primary family or his/her spouse



### **POPULATION RESEARCH CENTER**

### Measures

- Dependent variable: All-cause mortality
- Independent variables:
  - Own and Spouse's Education
    - Years of completed formal schooling
    - Categorized: 0-11 years, 12 years, 3-15 years, 16+ years
  - Household income at interview
  - Age at interview (range: 50 84 years)
  - Gender (Female = 1, Male = 0)



### **POPULATION RESEARCH CENTER**

## Methods

- Shared Frailty Models
  - Weibull proportional hazard models
  - Inverse-Gaussian distributed frailties shared between spouses
- The conditional individual hazard is as follows:

$$h_{ij}(t|\alpha_i) = \alpha_i h_{ij}(t) = \alpha_i \exp(\mathbf{x}_{ij}\beta) pt^{p-1}$$

where

 $\alpha_i$  is a couple-level shared frailty,  $\mathbf{x}_{ij}$  is a vector of observed covariates, and p is the Weibull scale parameter.



### **POPULATION RESEARCH CENTER**

## Methods

- We estimated eight nested models with the following independent variables:
  - Model 1: h(t) = Own Education + Female + Age
  - Model 2: h(t) = Own Education + Spouse's Education + Female + Age
  - Model 3: h(t) = Own Education + Spouse's Education + Household Income + Female + Age
  - Model 4: h(t) = Own Education + Spouse's Education + Own Education\*Spouse's Education + Household Income + Female + Age
  - Models 5-8: Models 1-4 with all two & three-way interactions with gender



### **POPULATION RESEARCH CENTER**

### Results

#### Table 1: Distribution of own X spouse's education for the sample (N=118,718)

|             | Less Than<br>High School | High<br>School | Some<br>College | College |
|-------------|--------------------------|----------------|-----------------|---------|
| Less Than   | 19,448                   | 10,363         | 1,755           | 589     |
| High School | (16.1)                   | (8.6)          | (1.5)           | (0.5)   |
| High        | 10,363                   | 26,922         | 6,623           | 4,634   |
| School      | (8.5)                    | (22.7)         | (5.6)           | (4.0)   |
| Some        | 1,755                    | 6,623          | 4,874           | 4,436   |
| College     | (1.5)                    | (5.6)          | (4.2)           | (3.8)   |
| Collogo     | 589                      | 4,634          | 4,436           | 10,674  |
| College     | (0.5)                    | (4.0)          | (3.8)           | (9.3)   |

#### **Spouse's Education**



**Own Education** 

### **POPULATION RESEARCH CENTER**

### Results

Table 3: Weibull shared frailty models for all-cause mortality, NHIS-LMF, 1986-2002 (N = 118,718)

|                                     | Model 1   | <u>Model 2</u> | <u>Model 3</u> | Model 4   |
|-------------------------------------|-----------|----------------|----------------|-----------|
| Own Education                       |           |                |                |           |
| Less than high school               | 1.706***  | 1.528***       | 1.327***       | 1.349***  |
| High school                         | 1.381***  | 1.292***       | 1.172***       | 1.233***  |
| Some college                        | 1.244***  | 1.198***       | 1.131***       | 1.167***  |
| Spouse's Education                  |           |                |                |           |
| Less than high school               |           | 1.262***       | 1.107***       | 1.141     |
| High school                         |           | 1.142***       | 1.049*         | 1.087*    |
| Some college                        |           | 1.122***       | 1.068**        | 1.107*    |
| Own X Spouse's Education            |           |                |                |           |
| < High school X < High school       |           |                |                | 0.960     |
| < High school X High school         |           |                |                | 1.007     |
| < High school X Some college        |           |                |                | 0.925     |
| High school X < High school         |           |                |                | 0.981     |
| High school X High school           |           |                |                | 0.915     |
| High school X Some college          |           |                |                | 0.942     |
| Some college X < High school        |           |                |                | 0.947     |
| Some college X High school          |           |                |                | 0.951     |
| Some college X Some college         |           |                |                | 0.958     |
| ρ (Weibull scale parameter)         | 1.547***  | 1.547***       | 1.542***       | 1.542***  |
| θ (Inverse-Gaussian shared frailty) | 0.146***  | 0.153***       | 0.144***       | 0.143***  |
| Log-Likelihood                      | -82,159.3 | -82,101.9      | -81,863.0      | -81,854.2 |
| BIC                                 | 164,412.0 | 164,332.4      | 163,901.2      | 163,988.8 |

Notes: <sup>†</sup>p ≤ 0.10, <sup>\*</sup>p ≤ 0.05, <sup>\*\*</sup>p ≤ 0.01, <sup>\*\*\*</sup> p ≤ 0.001; Models 1 and 2 control for gender and age (in years); Models 3 and 4 control for gender, age (in years), and household income. **POPULATION RESEARCH CENTER** 

### Results

Table 4: Matrix of relative risk of death by own & spouse's education

| Own Education |                          | Less Than<br>High School | High<br>School | Some<br>College | College |
|---------------|--------------------------|--------------------------|----------------|-----------------|---------|
|               | Less Than<br>High School | 1.469                    | 1.392          | 1.418           | 1.327   |
|               | High<br>School           | 1.298                    | 1.229          | 1.252           | 1.172   |
|               | Some<br>College          | 1.252                    | 1.186          | 1.208           | 1.131   |
|               | College                  | 1.107                    | 1.049          | 1.068           | 1.000   |

#### **Spouse's Education**



**POPULATION RESEARCH CENTER** 

# Summary of Key Results

- A spouse's education is linked to his/her partner's risk of death net of a persons' own education and household income.
- The additive association between own and spousal education suggests that education is a household resource.
- The absence of a significant interaction between own and spousal education suggests no effect of status inconsistency on mortality.
- The association between spousal education and mortality does not differ according to gender (models not shown).



**POPULATION RESEARCH CENTER** 

### Conclusion

- Models omitting information on spousal education among the married may overestimate the importance of an individual's own education on his/her risk of death.
- Researchers should seriously contemplate including spousal education in analyses of educational differences in mortality among the married.
- Future research should carefully examine the mechanisms linking spousal education and mortality.



**POPULATION RESEARCH CENTER**