Gender difference in disease patterns and their impact on disability in the oldest old: results from the Newcastle 85+ Study

Andrew Kingston

Professor Carol Jagger

Objectives

- Do diseases cluster together and are patterns the same for men and women?
- What is the effect of disease patterns on disability and are these the same for men and women?
- Are patterns of disease are related to short term mortality (18 months) and similarly for men and women?

Newcastle 85+ Study

A 5-year prospective study of 1042 individuals born in 1921 of the biological, clinical and psychosocial factors associated with healthy ageing

Recruitment profile for cohort

Diseases

Diseases include:

- Hypertension
- Ischaemic heart disease
- Heart failure
- Peripheral Vascular Disease
- Atrial fibrillation or flutter
- Cerebrovascular disease
- Arthritis

- Osteoporosis
- Diabetes
- Renal impairment MDRD
- Anaemia
- Thyroid disease
- Visual impairment
- Cognitive Impairment
- Respiratory disease

Chronic bronchitis, Emphysemia, Asthma, Bronciectasis, Pulmonary Fibrosis, Fibrosing Alveolitis, Asbestosis, Pnuemoconiosis and COPD (in absense of other conditions)

Individual Disease Prevalence

	Men	Women	All	OR (95% CI) **
Hypertension	52.7 (168)	60.1 (316)	57.3 (484)	1.4 (1.0 - 1.8)
Ischaemic heart disease	36.7 (117)	30.6 (161)	32.9 (278)	0.8 (0.6 - 1.0)
Heart failure	11.9 (38)	11.8 (62)	11.8 (100)	1.0 (0.6 - 1.6)
Peripheral Vascular Disease	9.4 (30)	5.5 (29)	7.0 (59)	0.6 (0.3 - 1.0)
Atrial fibrillation or flutter	17.2 (53)	12.5 (60)	14.3 (113)	0.7 (0.4 - 1.1)
Cerebrovascular disease	24 5 (78)	19 0 (100)	21 1 (178)	07(05-10)
Arthritis	60.5 (193)	71.5 (376)	67.3 (569)	1.6 (1.2-2.2)*
Respiratory disease	22.3 (71)	22.8 (120)	22.6 (191)	1.0 (0.7 - 1.5)
Diabetes	14.4 (46)	12.6 (66)	13.3 (112)	0.9 (0.6 - 1.3)
Osteoporosis	4.1 (13)	18.8 (99)	13.3 (112)	5.5 (3.0 - 10.8)*
Thyroid disease	6.6 (21)	19.0 (100)	14.3 (121)	3.3 (2.0 - 5.7)*
Renal impairment MDRD	54.6 (166)	67.3 (318)	62.5 (484)	1.7 (1.3 - 2.5)*
Anaemia	33.1 (98)	27.6 (126)	30.0 (224)	0.8 (0.6 - 1.1)
Visual impairment	46.1 (147)	57.8 (304)	53.4 (451)	1.6 (1.2 - 2.1)*
Cognitive Impairment	6.3 (20)	7.3 (38)	6.9 (58)	1.2 (0.7 - 2.2)
* - Statistically Significant				

Institute for Ageing and Health

** - OR: Women: Men

Patterns of disease

- Make use of specified diseases
- Variable Cluster Analysis

Vigneau E. and Qannari E. M. Clustering of variables around latent components. Communications in Statistics - Simulation and Computation. 32(4): 1131-1150, 2003.

- Diseases are analysed allowing for gender differences
- Disease groupings will be used for further analyses

Patterns of disease

Disability

Basic ADLs

 feeding self, washing face and hands, getting in and out of bed, getting on and off toilet, dressing /undressing, getting in and out of chair, washing all over, cutting own toenails

Instrumental ADLs

- light housework, heavy housework, preparing and cooking hot meal, taking medication, managing money, shopping
- Mobility
 - getting around house, going up and down stairs/steps, walking > 400 yards
- Disability score (0-17)
 - Sum of difficulty with any of the (I)ADL and mobility measures

Disability score

Median (IQR) for (I)ADL and Mobility Difficulty				
Men	Women			
2 (2-6)	4 (1-8)			
p<0.0001				

Which disease patterns have most effect on disability?

- For analysis disability score dichotomised in two ways:
 - None+mild (0-6) v mod-severe(7+)
 - None+mild+mod (0-12) v severe (13+)
- Use Logistic Regression then Population Attributable Fraction (PAF) to determine disease effects
 - Definition: PAF is the % reduction in population disability that would occur if exposure to the disease were removed
- Model constructed on all diseases then via backwards elimination
- Adjustment for education

Effect of Disease on Disability (0-6, 7+)

Health

Effect of Disease on Disability (0-6, 7+)

Effect of Disease on Disability (0-12, 13+)

Health

Effect of Disease on Disability (0-12, 13+)

Population Attributable Fraction - Men

Total PAF: 45.5% (6.3% - 68.3%)

Population Attributable Fraction - Women

Total PAF: 54.9% (30.6%-70.6%)

- 18 month mortality 128 participants died during this interval.
- Kaplan Meier survival curves and Log rank test used to asses differential survival by gender and disease groups respectively
 - Bonferroni correction also implemented (multiple testing)
- Cox proportional hazards model for multiple disease groups
 - Models constructed by gender
 - Model assumptions checked

Disease	Men	Women
Cognitive	p=0.0033	p=0.0101
Respiratory	p=0.9119	p=0.7991
Cardiac	p=0.3661	p=0.0159
PVD, Hypertension, Diabetes	p=0.3385	p=0.0105
Renal Impairment & Anaemia	p=0.0901	p=0.1779
Arthritis	p=0.8819	p=0.5953
Eye Disease	p=0.7224	p=0.9325
Osteoporosis	p=0.0041	p=0.3054
Thyroid disease	p=0.9013	p=0.3888
Education	p=0.9013	p=0.0237

Health

Conclusion

- Not much difference in terms of gender
- To reduce the burden of disability on the oldest then interventions should be targeted towards:
- Cognitive impairment
- Thyroid disease
- Arthritis (particularly women)
- Increased mortality for:

<u>Men:</u>

- Osteoporosis 5x
- Renal Impairment & Anaemia 2x
- Cognitive Impairment 1.8x

Women:

- Cardiac Impairment 2x
- Cognitive Impairment 1.8x

Strengths and Weaknesses

STRENGTHS:

- Large sample size
- Data are from oldest old (not previously described)
- Data collected are detailed and very few missing values

WEAKNESSES:

- Cross sectional analysis (not mortality)
- Small numbers of men who suffer from Osteoporosis
- PAF analysis treats diseases as mutually exclusive during calculation and can only give overall PAF
- Only 18 months mortality

Future Analyses

FUTURE ANALYSES:

- Mortality to 36 months and beyond
- Use of Sequential Population Attributable Fractions to account for mutual exclusivity in disease attribution
- Longitudinal analyses to determine disability trajectories and the effect of diseases (i.e. Look at change in disability and onset of disease)

Acknowledgements

- Co-authors: Joanna Collerton, Karen Davies, Martin Eccles, Louise Robinson, Carmen Martin-Ruiz, Thomas von Zglinicki, Oliver James, Tom Kirkwood.
- The research nurse team.
- Pauline Potts data manager.
- The Newcastle 85+ Study academic stakeholders.
- National Health Service organizations.
- Medical Research Council, Biotechnology and Biological Sciences Research Council, Dunhill Medical Trust, British Heart Foundation, Unilever.
- And of course the study participants.

Disease	Composite make-up
Hypertension	
Ischaemic heart disease	Angina, MI, Coronary Angioplasty, CABG
Heart failure	
Peripheral Vascular Disease	
Atrial fibrillation or flutter	Diagnosed from ECG as disease transient
Cerebrovascular disease	Stroke, TIA, Carotid Endarterectomy
Arthritis	Osteoarthritis, rheumatoid arthritis, lumber spondylosis / back OA / Spine OA, Cervical spondylosis / Neck OA & other arthritides not specified in GP records
Respiratory disease	Chronic bronchitis, Emphysemia, Asthma, Bronciectasis, Pulmonary Fibrosis, Fibrosing Alveolitis, Asbestosis, Pnuemoconiosis and COPD (in absense of other conditions)
Osteoporosis	
Thyroid disease	Hyperthyroid, Hypothyroid plus those undiagnosed from blood test
Diabetes	Type I, II and type unspecified
Renal impairment MDRD	MDRD formula (coded as normal and mild; moderate, severe and very severe)
Anaemia	Using WHO crierion from blood test results
Visual impairment	Cataracts, Age related macular degenration, Glaucoma, Registered paritally or totally blind.
Cognitive Impairment	MMSE with impairment at <=17 point score

