

Predicting Longitudinal Trajectories of Health Probabilities with Random-effects Multinomial Logit Model

Xian Liu, Ph.D.

Charles C. Engel, MD, MPH

- 1. Develop a new retransformation method for correctly predicting longitudinal trajectories of health probabilities
- 2. Provide an estimator for calculating standard errors of the predicted probabilities using the delta method
- 3. Demonstrate serious prediction biases in predicted probabilities without considering retransformation of random errors.

- 1. It helps scientists be aware of complexity in using random-effects multinomial logit model to describe longitudinal health data
- 2. It provides a new method to correctly predict longitudinal trajectories of health probabilities
- 3. It provides more accurate health outcome data for policy-makers and scientists

- 1. Unbiased parameters cannot convert to unbiased estimates of health probabilities without retransforming random errors
- 2. Standard errors of predicted probabilities are severely underestimated if random effects are ignored
- 3. Both between-persons and within-person random errors can be estimated within the random-effects multinomial logit model

Model Specifications

1. The random-effects MNL model:

$$\log\left(\frac{\mathbf{P}_{_{ijk}}}{\mathbf{P}_{_{ij(K+1)}}}\right) = \mathbf{x}'_{_{ij}}\boldsymbol{\beta}_{_{k}} + \boldsymbol{v}_{_{ik}} + \boldsymbol{\varepsilon}_{_{ijk}}, \quad \text{where } k = 1, \dots, K.$$

2. The inverse link function of the above:

$$\hat{\mathbf{P}}_{ijk} = \left[\sum_{l=1}^{K+1} \exp(\mathbf{x}_{ij}' \hat{\boldsymbol{\beta}}_{l}) \hat{\boldsymbol{\Phi}}_{il}\right]^{-1} \exp(\mathbf{x}_{ij}' \hat{\boldsymbol{\beta}}_{k}) \hat{\boldsymbol{\Phi}}_{ik},$$

Where

$$E(\Phi_{k}) = \exp\left(\frac{\sigma_{k}^{2} + \sigma_{k}^{2}}{2}\right),$$

And

$$\operatorname{Var}(\Phi_{k}) = \exp[2(\sigma_{k}^{2} + \sigma_{k}^{2}) - \exp(\sigma_{k}^{2} + \sigma_{k}^{2})].$$

Model Specifications (continued)

3. Standard error of \hat{P} (delta method):

Let $\hat{\mathbf{L}}$ be a random vector of the predicted multinomial logit function and $\hat{\mathbf{P}} = g^{-1}(\hat{\mathbf{L}})$ is a transform of $\hat{\mathbf{L}}$. Then

 $\mathbf{E}\left[\mathbf{g}^{\cdot 1}(\hat{\mathbf{L}})\right] \approx \mathbf{g}^{\cdot 1}(\boldsymbol{\mu}),$

And

$$\mathbf{V}[g^{-1}(\hat{\mathbf{L}})] \approx \left[\frac{\partial g^{-1}(\hat{\mathbf{L}})}{\partial \hat{\mathbf{L}}} \middle| \hat{\mathbf{L}} = \mu\right]' \mathbf{\Sigma}(\hat{\mathbf{L}}) \left[\frac{\partial g^{-1}(\hat{\mathbf{L}})}{\partial \hat{\mathbf{L}}} \middle| \hat{\mathbf{L}} = \mu\right],$$

Where

$$\frac{\partial g^{-1}(\hat{\mathbf{L}})}{\partial \hat{\mathbf{L}}} = \left[\frac{\partial g_{1}^{-1}(\hat{\mathbf{L}})}{\partial \hat{\mathbf{L}}}, \frac{\partial g_{2}^{-1}(\hat{\mathbf{L}})}{\partial \hat{\mathbf{L}}}, \dots\right].$$

Model Specifications (continued)

4. Conditional effects of covariate m $(\Delta \hat{P}_{im})$:

Let $(\hat{P}_{k0}|\bar{x})$ and $(\hat{P}_{k1}|\bar{X}_m+1, \bar{x}_r)$ are two marginalized

probabilities. Then

$$\Delta \hat{\mathbf{P}}_{_{\mathrm{km}}} = \frac{\exp\left[\hat{\boldsymbol{\beta}}_{_{\mathrm{km}}}(\overline{\mathbf{x}}_{_{\mathrm{m}}}+1) + \overline{\mathbf{x}}_{_{\mathrm{f}}}'\hat{\boldsymbol{\beta}}_{_{\mathrm{kr}}}\right]\hat{\boldsymbol{\Phi}}_{_{\mathrm{k}}}}{1 + \sum_{i=1}^{K}\exp\left[\hat{\boldsymbol{\beta}}_{_{\mathrm{lm}}}(\overline{\mathbf{x}}_{_{\mathrm{m}}}+1) + \overline{\mathbf{x}}_{_{\mathrm{f}}}'\hat{\boldsymbol{\beta}}_{_{\mathrm{lm}}}\right]\hat{\boldsymbol{\Phi}}_{_{1}}} - \frac{\exp\left(\overline{\mathbf{x}}'\hat{\boldsymbol{\beta}}_{_{\mathrm{c}}}\right)\hat{\boldsymbol{\Phi}}_{_{\mathrm{k}}}}{1 + \sum_{i=1}^{K}\exp\left(\overline{\mathbf{x}}'\hat{\boldsymbol{\beta}}_{_{1}}\right)\hat{\boldsymbol{\Phi}}_{_{1}}}.$$

Significance test on $\Delta \hat{P}_{m}$ uses the Wald chi-square statistic:

$$\chi^{2}_{\text{w,k}} \approx \frac{\left(\hat{P}_{\text{kl}} - \hat{P}_{\text{k0}}\right)^{2}}{\hat{V}\left(\hat{P}_{\text{k0}}\right) + \hat{V}\left(\hat{P}_{\text{kl}}\right) - 2\hat{V}\left(\hat{P}_{\text{k0}}\right)\hat{V}\left(\hat{P}_{\text{kl}}\right)}.$$

Illustration

- Data Source The Survey of Asset and Health Dynamics among the Oldest Old (AHEAD), Wave I through Wave VI; 2,000 persons were randomly selected
- Three health states disabled, not disabled, dead at five follow up time points
- Covariates Time, time × time, gender, time × gender, age, and education.
- 4. Random intercept MNL model using SAS PROC.GLIMMIX.

Explanatory variable	Log(P ₁ /	/P ₃)	$Log(P_2/P_2)$	3)
And effect type	Parameter est.	Standard error	Parameter est.	Standard error
Fixed Effects:				
Intercpt	4.940***	0.127	2.879***	0.154
Time (centered)	0.058^{***}	0.013	0.411^{***}	0.032
Time \times time (centered)	-0.112***	0.005	-0.140***	0.006
Gender (centered)	0.535***	0.114	-0.345**	0.161
Time × gender (centered)	-0.015	0.021	0.004	0.034
Age (centered)	0.077^{***}	0.006	0.226^{***}	0.014
Education (centered)	-0.104***	0.012	-0.138**	0.018
Random Effects:				
Intercept	0.000	_	1.465***	0.434
Model Chi-square	7852.26			

Table 1. Results of random-effects multinomial logit models on functional status

In older Americans: AHEAD longitudinal survey (n = 2,000)

* 0.05 < P < 0.10; ** 0.01 < P < 0.05; *** P < 0.01

Table 2. Predicted probabilities of three functional statuses at six time points With standard errors: AHEAD longitudinal survey (n = 2,000)

Functional			Time point			
Status	T0 (1993)	T1 (1995)	T2 (1998)	T3 (2000)	T4 (2002)	T5 (2004)
	Pred	icted probabili	ty generated fr	om the retrans	formation appr	oach
Disabled	0.641	0.909	0.821	0.722	0.600	0.563
	(0.013)	(0.049)	(0.186)	(0.240)	(0.303)	(0.255)
Dead	_	0.043	0.172	0.272	0.390	0.387
		(0.051)	(0.188)	(0.241)	(0.308)	(0.278)
NT / 1° 11 1	0.250	0.040	0.007	0.007	0.010	0.050
Not disabled	0.359	0.049	0.007	0.006	0.010	0.050
	P1	redicted probat	bility generated	l from the fixed	d effects appro	ach
D' 11 1	0.641	0.020	0.012	0.042	0.770	
Disabled	0.641	0.930	0.912	0.843	0.770	0.696
	(0.011)	(0.005)	(0.008)	(0.009)	(0.010)	(0.018)
Dead	_	0.020	0.080	0.151	0.217	0.241
		(0.004)	(0.008)	(0.009)	(0.010)	(0.018)
Not disabled	0.250	0.050	0.008	0.007	0.012	0.062
inot disabled	0.359	0.050	0.008	0.007	0.013	0.063

Note: The test on the probability of "not disabled" depends on the testing results on the probabilities of the other two health states, and therefore, it does not have a standard error estimates

Functional		Time point							
Status	T0 (1993)	T1 (1995)	T2 (1998)	T3 (2000)	T4 (2002)	T5 (2004)			
				a					
	Conditio	nal effect of gender ge	enerated from the retr	ansformation approac	ch				
Disabled	0.149	0.070	0.141	0.192	0.198	0.164			
	(35.702)	(0.651)	(0.227)	(0.263)	(0.233)	(0.222)			
Dead	-	-0.042	-0.138	-0.191	-0.197	-0.150			
		(0.206)	(0.214)	(0.256)	(0.223)	(0.156)			
Not disabled	-0.149	-0.028	-0.003	-0.001	-0.001	-0.014			
not disabled	-0.149	-0.028	-0.003	-0.001	-0.001	-0.014			
	Condit	ional effect of gender	generated from the fi	xed effects approach					
Disabled	0.147	0.049	0.077	0.120	0.150	0.143			
	(42.203)	(27.711)	(28.546)	(43.479)	(33.728)	(15.436)			
Deed		-0.018	0.072	-0.118	-0.147	0 1 1 9			
Dead	-		-0.073			-0.118			
		(7.452)	(25.631)	(41.482)	(31.486)	(9.740)			
Not disabled	-0.147	-0.030	-0.004	-0.002	-0.003	-0.024			

Table 3. Conditional effects of gender on probabilities of three functional statuses With chi-square statistics: AHEAD longitudinal survey (n = 2,000)

Figure 2. Predicted probabilities of disability and death by men and women

 Neglect of random errors retransformation in the random-effects multinomial logit model leads to serious prediction biases in health probabilities.

 Correspondingly, standard errors of those predicted probabilities are severely underestimated thereby resulting in misleading analytic results.