The Role of SES in Producing Sex Differences in HLE in the US, 1972+

Scott M. Lynch, Princeton University
J. Scott Brown, Miami University

Introduction

- Gender differences in health \& mortality are well-known
- Women live longer-consistently 5-7 years
- Women evidence poorer health
- Women get sick; men die
- Question: Is this biological?

How to disentangle Biology and Else?

- Explain away sex differences via other mediators (e.g., Verbrugge 1984)
- Sex differences in health can be explained via social factors
- Sex differences in mortality remain, but men tend to have fatal diseases

Usual Conceptualization

Problem

- α

1. Y chromosome is constant
2. Across age, hormones not

- β

1. Epidemiologic transition
2. Aging (conditional on survival)

- γ

1. SES improvement over time for women
2. Parental role strain change over age?

- δ

1. Increased importance of SES across age
2. Increased importance of SES across time

Today

- Consider HLE from the early 70s to early 00s
- How does HLE change over time for men and women?
- How does the explanatory role of SES change over time?

Data

- National Health Interview Survey 1972-2002
- NCHS life tables by age, sex, \& race $\left(q_{x}\right)$
- $15,000<n<40,000$ each year
- Measures
- Age: 30-84+
- Sex: Male (38\%); Female (62\%)
- Race: Black (12\%); White (88\%) (else excluded)
- Region: South (32\%); Other (68)
- Years of Schooling: $\bar{x}=11.9, s=3.3$
- Income (Family; $\ln (2008)$): $\bar{x}=10.54 ; s=.79$ (48k/28k))

Health Measurement

- Dichotomized SRH (E/VG/G vs. F/P)
- Only consistently measured health status item in NHIS
- Good measure (valid/reliable)
- But, may be gender differences in response

Methods

- Cross-sectional multistate life tables (Lynch \& Brown 2010)

1. Merge mortality rate/prob. data into NHIS file by ASR
2. Set up bivariate probit with SRH and mortality risk as outcomes
3. Gibbs sample to obtain m sets of model parameters
4. $\forall m$, generate sets of age-specific prevalence matrices
5. Use ecological inference to convert prevalence to transition probabilities
6. Given TPM, generate life tables for desired covariate profile

Strategy for Answering Question

- Estimate MSLT for males (at male SES values)
- Estimate MSLT for females (at female SES values)
- Estimate MSLT for females (at male SES values)
- Compute:

$$
P_{t}=\frac{H L E_{M M}-H L E_{F M}}{H L E_{M M}-H L E_{F F}}
$$

- Evaluate $P_{t=0} \ldots P_{t=T}$ for change
- Note: computation assumes $H L E_{F}<H L E_{F M}<H L E_{M}$. If not, P_{t} unrestricted.

Results: Period Health Patterns

Male and Female Health by Year

Period Health Gap

Results: Period Education Patterns

Male and Female Mean Education by Year

Period Education Gap

Results: Period Income Patterns

Male and Female Mean Income by Year

Period Income Gap

PLE for Males, 1972-2002

PLE for Males and Females, 1972-2002

PLE for Males and Females + , 1972-2002

\% of Sex Difference Explained by SES, 1972-2002

Summary

- Period health favored women $\left(<^{\prime} 87\right)$ then men
- Period education favors males, with gap increasing
- Period income favors males, with gap increasing
- HLE
- Prior to 1980, if women had men's SES, PLE gap would be even larger (favoring women)
- After 1980, if women had men's SES, no PLE gap would exist

Summary, cont'd

- In other words: no room for biology in PLE
- Issues:
- Again, measure is SRH; may be sex dependent response
- Period approach taken here, not cohort
- Not clear what period approach means
- By cohort, education and income are improving for women
- Next step: evaluate PLE by cohort over (necessarily) short intervals
- Consider two sets of cohorts-1932-1952 at 40-50 \& 1942-1962 at 30-40
- What do education \& income differences look like?
- What role do they play in accounting for PLE differences over a 10 year span?

Education at Age 40 by Sex, 1932-1952 Cohorts

Income at Age 40 by Sex, 1932-1952 Cohorts

PLE at Age 40 by Sex, 1932-1952 Cohorts

\%PLE Explained at Age 40 by Sex, 1932-1952 Cohorts

Education at Age 30 by Sex, 1942-1962 Cohorts

Income at Age 30 by Sex, 1942-1962 Cohorts

PLE at Age 30 by Sex, 1942-1962 Cohorts

\%PLE Explained at Age 30 by Sex, 1942-1962 Cohorts

\%PLE Explained at Age 30 by Sex, 1942-1962 Cohorts

Conclusions

- Period and cohort approaches yield different results
- Period results suggest virtually all PLE differences can be explained by SES in recent years
- Older cohort results say an increasing \% of PLE differences explainable by SES
- Younger cohort results say a decreasing \% of PLE differences explainable by SES
- WHY?
- Part is that recent cohorts are more equal in SES than older cohorts, so no leverage
- Part is that health is converging?
- Regardless-must pay attention to APC issues in addressing this question

