Estimating stroke-free life expectancy using a multi-state model

Ardo van den Hout¹, Riccardo Marioni² Fiona Matthews¹

¹MRC Biostatistics Unit, Cambridge, UK

²Department of Public Health and Primary Care, Cambridge University, UK

REVES, Paris, May 2011

Estimating stroke-free life expectancy using a multi-state model

Outline:

Research interest & data

Multi-state model:

time-dependent hazards & missing states

Application

Life expectancies

Conclusion

Research interests

- History of stroke in the older population:
 - Risk factors for stroke: sex and education
 - Total residual life expectancy (LE)
 = stroke-free LE + LE with a history of stroke
- The wider scope is the study of ageing

Data

- Longitudinal data available from the MRC Cognitive Function and Ageing Study (CFAS, www.cfas.ac.uk)
- No (reliable) data on exact time of stroke
- History of stroke = one or more strokes in the past

• Three-state model for history of stroke:

Censoring

- Occurrence of stroke is process in continuous time
- Pre-scheduled interviews: transitions between living states are interval censored
- In CFAS: death times are known
- Right-censoring at end of 14 years of follow-up

Missing data

- Pre-scheduled interviews
- A missed interview: missing data
- Missing values for state can be seen as panel data But...
 - Info on time-dependent covariates is also missing
 - If reason for missing an interview is related to the process under investigation, then ignoring this can lead to bias

• Panel data CFAS. For subset (N = 2321) in application:

Continuous-time model with interval-censoring

- Model fitted with msm in R (Jackson, 2011)
- Details of MLE will be skipped (Kalbfleisch & Lawless, 1985)
- Two aspects will be discussed briefly:
 - Time-dependent hazards
 - Missing values for states

Time-dependent hazards

• Three-state illness-death model for stroke:

- Transition-specific hazards: $q_{12}(t), q_{13}(t), q_{23}(t) > 0$
- Log-linear model: $\log[q_{rs}(t)] = \beta_{rs}^{\top} z(t)$

- Age as time scale
- Loglinear model in application: $\log[q_{rs}(age)] = \beta_{rs.0} + \beta_{rs.1}age + \beta_{rs.2}ybirth + \beta_{rs.3}sex + \beta_{rs.4}educ$
- Or, equivalently with t = age

$$q_{rs}(t) = \lambda_{rs} \exp[\gamma_{rs} t] \exp[\alpha_{rs}^{\top} z]$$

- Age as time scale
 - Piecewise-constant hazards in likelihood
 - Example: for observation times t_1, t_2, t_3, t_4 hazards are assumed to be constant within $(t_1, t_2]$, $(t_2, t_3]$, $(t_3, t_4]$

Missing states. Basic idea

• Example: likelihood contribution for times t_1, t_2, t_3 with missing state at t_2

$$\mathbb{P}(X_{t_1}, X_{t_3}) = \sum_{x=1,2} \mathbb{P}(X_{t_1}, X_{t_2} = x, X_{t_3})$$

Sum over all possible states at time t_2 .

 Adding missing states improves piecewise-constant approximation! **Application: data**

• Subset of CFAS: data from Newcastle State table:

	То				
From	1	2	3	Missing	Right-censored
1	2942	105	837	855	382
2	0	304	176	60	43
Missing	24	8	542	1200	341

• N = 837 + 176 + 542 + 382 + 43 + 341 = 2321

- 1441 women, 880 men
- Age at baseline:

< 70	(70,75]	(75,80]	(80,85]	> 85
761	559	541	318	142

• Number of records per individual for living states:

Fitted model

• Equation for transition intensities:

 $\log[q_{rs}(age)] = \beta_{rs.0} + \beta_{rs.1}age + \beta_{rs.2}ybirth + \beta_{rs.3}sex + \beta_{rs.4}educ$

age	ybirth			sex (men \equiv 1)		
$\beta_{12.1}$	0.11 (0.05)	$\beta_{12.2}$	0.03 (0.05)	$\beta_{12.3}$	0.40 (0.20)	
$eta_{ extsf{13.1}}$	0.09(0.01)	$eta_{ extsf{13.2}}$	< 0.01 (0.01)	$eta_{ extsf{13.3}}$	0.36 (0.08)	
$eta_{ extsf{23.1}}$	0.05 (0.02)	$\beta_{23.2}$	-0.01 (0.02)	$\beta_{23.3}$	0.43 (0.13)	
educ (10 or more yrs of educ \equiv 1)						
$eta_{ extsf{12.4}}$	-0.02 (0.23)	$eta_{ extsf{13.4}}$	-0.27 (0.10)	$eta_{ extsf{23.4}}$	0.16 (0.16)	

- Model validation is not straightforward
 - Varying observation times
 - Interval censoring
 - Missing data
- Heuristic check: assess predicted survival

Life expectancies

- Residual life expectancy (LE) at a given age t_0
- Alive/death survival: LE is the expectation of the remaining years spent alive (U):

$$\mathbb{E}(U|t_0, \mathcal{Z}) = \int_0^\infty u f(u|t_0, \mathcal{Z}) du = \int_0^\infty S(u|t_0, \mathcal{Z}) du$$
$$= \int_0^\infty \mathbb{P}(X_{t_0+u} = 1|t_0, \mathcal{Z}) du$$

• Multi-state survival: LE in state s given state r at t_0 :

$$e_{rs}(t_0) = \int_0^\infty \mathbb{P}(X_{t+t_0} = s | X_{t_0} = r, \mathcal{Z}) dt$$

- LE in state s given state r is occupancy time for $T = \infty$ (Kulkarni, 2011)
- Marginal LE given by

$$e_{\bullet s}(t_0) = \sum_{r=\text{living state}} \mathbb{P}(X_{t_0} = r | \mathcal{Z}) e_{rs}(t_0)$$

Needed: distribution of the living states at age t_0

• Total LE at age t_0 is

$$e(t_0) = \sum_{s=\text{living state}} e_{\bullet s}(t_0)$$

- Logistic regression model for distribution of states: $\mathbb{P}(\text{State 2 at baseline}) = \frac{\exp[\mu]}{1 + \exp[\mu]}$ $\mu = \alpha_0 + \alpha_1 \text{age}$
- Multinomial regression for model with > 2 living states

Software for computation of life expectancies

- Fit multi-state model with msm with time-dependent age
- Estimate and investigate LEs with additional R code:
 - Functions for computation, summarising and plotting
 - MLE simulation used to compute uncertainty
 - Currently implemented for 3-state and 4-state models

Example of output in application:

```
age ybrth sex educ
70 20 0 1
Using simulation with 1000 replications
```

Poir	nt esti	imates	, and	mean,	SEs,	quantiles	from	simulation:
	pnt	mn	se	0.025q	0.97	75q		
e11	11.14	10.97	0.60	9.82	12.	. 18		
e12	1.67	1.72	0.45	0.96	2.	.70		
e21	0.00	0.00	0.00	0.00	0.	.00		
e22	5.40	5.46	0.92	3.76	7.	. 26		
e1	10.45	10.30	0.58	9.18	11.	.43		
e2	1.90	1.95	0.43	1.23	2.	.89		
е	12.35	12.25	0.48	11.35	13.	.25		

Conclusion (I)

- Continuous-time illness-death model for stroke. Flexibility w.r.t. censoring and inclusion of covariates
- Missing values for state can be taken into account
- LEs using model parameters. Complete info on uncertainty. Alternative to multi-state life tables methods
- Computations with available software

Conclusion (II)

- Topics in other work
 - Non-ignorable missing data
 - Misclassification of states
 - Piecewise-constant hazards with a grid independent of observations
- Future work
 - Functional form of regression equation
 - Model validation