IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the reversibility

Using some facilities of IMaCh

Could IMaCh treat irreversible deterioration of health?

Nicolas Brouard ${ }^{1}$ and Karine Pérès ${ }^{2}$

REVES 24th, Taichung, 25th May 2012

[^0]
Outline

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering
IMaCh
The complex
case
The advantage
of the
reversibility
Using some facilities of IMaCh

Ideas for the

Remembering IMaCh
The complex case
The advantage of the reversibility

Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

Conclusions

IMaCh

IMaCh irreversibility

Nicolas

IMaCh is a statistical computer program which aims is to solve a realistic process where incidence of disability estimated from two interviews of a longitudinal studies on health is usually compensated by a recovery which can also be observed and estimated.
But for some disability states, it is sometimes hard to observe recovery cases. Sometimes also, we would like to use IMaCh for estimating an incidence to a state which by definition is not reversible, like having "had a stroke" or "demented". IMaCh hasn't been designed for the double decrement model. But IMaCh fails when reversibility is weak and should be adapted to work.
We will explore the different possibilities and constraints offered by current version of IMaCh in order to treat the case of Dementia in a famous French longitudinal study named Paquid with 5 medical exams from 1989 to 2000 ,

Statistical model behind IMaCh

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the reversibility

Likelihood with reversibility and without

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex cas
The advantage of the reversibility

Using some facilities of IMaCh

Ideas for the

- Even if there is a strong relation between both incidences, we often find a meaningful likelihood and a $95 \% \mathrm{Cl}$ (blue)

- When recovery is rare (few cases, low level): likelihood distortion amongst recovery p_{21}. Maximum Likelihood doesn't converge.

Incidences are correlated and not as accurately
estimated as prevalences

IMaCh irreversibility

Nicolas
Brouard and
Karine Pérès

Remembering
IMaCh
The complex case
The advantage of the reversibility

Using some facilities of IMaCh

Ideas for the
future of IMaCh

Optimal delay
between two waves REVES Canberra 1994

Conclusions

- If $\hat{a_{12}}$ is high, $\hat{b_{12}}$ is also high.

Incidences are correlated and not as accurately estimated as prevalences

IMaCh irreversibility

- If $\hat{a_{12}}$ is high, $\hat{b_{12}}$ is also high.
- In a model without differential mortality and similar to

$$
\text { Healthy (1) } \underset{r}{\stackrel{i}{\gtrless_{r}}} \text { Disabled (2) }
$$

incidences can't be estimated separately, but period prevalence as a combination of both incidences are not affected.

Incidences are correlated and not as accurately estimated as prevalences

IMaCh irreversibility

Nicolas

- If $\hat{a_{12}}$ is high, $\hat{b_{12}}$ is also high.
- In a model without differential mortality and similar to
incidences can't be estimated separately, but period prevalence as a combination of both incidences are not affected.
- Can IMaCh estimate such an irreversible model?

Simplest case: the life table

IMaCh irreversibility

Nicolas
Brouard and
Karine Pérès

Remembering IMaCh

The complex case
The adivantage of the
reversibility
Using some facilities of IMaCh

Ideas for the

- IMaCh is able to solve partially a simple model: the life table

disabled
(1 or 2)

Using IMaCh for estimating the total mortality

IMaCh irreversibility

Nicolas Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

The parameter file (mle=-3)

```
title=paquid-don datafile=paquid-dem-esp.txt lastobs=1237 firstpass=1 lastpass=6
ftol=1.000000e-008 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=6 mle=-3 weight=0
model=.
```


The data file

The results: Life table

```
iter=5 MLE=-4695.805345 Eq=0.024669* exp (0.125162*(age-75))
0.024669 [0.019143 ; 0.030195]
0.125162 [0.105487 ; 0.144837]
Age cllm
76}997533 0.027958 2727 96170 1109721 11.377896
77 94806 0.031686 3004 93304 1013552 10.690772
78}991802 0.035911 3297 90154 920247 10.024245
79}888505 0.040699 3602 86704 830094 9.379010
80
```


Trying the full reversible model

IMaCh irreversibility

Nicolas Brouard and Karine Pérès

Remembering IMaCh

The complex case
The advantage of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

Dementia incidence is known to be related to Primary School Education level which is linked to Socio-Economic status The parameter file $(\mathrm{mle}=1)$

```
title=paquid-don datafile=paquid-dem-esp.txt lastobs=1237 firstpass=1 lastpass=6
ftol=1.000000e-008 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=6 mle=1 weight=0
model=.
```

The results: divergence after iteration 5 in the recovery a21 and b21

Estimating Life expectancy of Demented

IMaCh irreversibility

Nicolas Brouard and Karine Pérès

Remembering IMaCh

The complex case
The advantage of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

The parameter file (mle=-3)

```
title=paquid-don datafile=paquid-dem-esp.txt lastobs=1237 firstpass=1 lastpass=6
ftol=1.000000e-008 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=6 mle=-3 weight=0
model=.
```

The data file (changing status 1 into unknown!)

The results: Coefficients are not significant (absence of a slope with age: -0.007355)

```
iter=5 MLE= -420.038801 Eq=0.205107* exp (-0.007355*(age-77))
```

iter=5 MLE= -420.038801 Eq=0.205107* exp (-0.007355*(age-77))
0.205107 [0.060569; 0.349645]
0.205107 [0.060569; 0.349645]
-0.007355 [-0.075483 ; 0.060772]
-0.007355 [-0.075483 ; 0.060772]
Age lx qx dx Lx Tx Tx e(x)
Age lx qx dx Lx Tx Tx e(x)
llllllll

```
llllllll
```

Estimating Life expectancy without Dementia

IMaCh irreversibility

Nicolas Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

The parameter file (mle=-3)

title=paquid-don datafile=paquid-dem-esp.txt lastobs=1237 firstpass=1 lastpass=6
ftol=1.000000e-008 stepm=12 ncovcol=2 nlstate $=2$ ndeath $=1$ maxwav=6 mle $=-3$ weight $=0$
model=.
The data file: changing status 2 into dead (no reversibility of dementia)

The results: 11.76 at age 75 to be compared with 12.08

```
iter=6 MLE=-4546.831739 Eq=0.021545*exp (0.147751*(age-75))
0.021545 [0.016626; 0.026464]
0.147751 [0.127648; 0.167854]
Age lx lx qx dx Lx Lx Tx e (x)
75 100000 0.021545 2154 98923 11776026 11.760255
llllllll
79
```


Life expectancy by level of education

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering

IMaCh
The complex
case
The advantage
of the
reversibility
Using some facilities of IMaCh

Ideas for the

- Low education (CEP): 11.72 years
- High (CEP): 12.35 years
- IMaCh is measuring life expectancy nicely using the survival times detailed by month.

Ideas for IMaCh

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

- Detecting when the likelihood is flat among a particular direction (ideas?).

Remembering IMaCh
The complex
case
The advantage of the
reversibility
Using some facilities of MaCh

Ideas for the future of IMaCh

Optimal delay
between two
waves REVES Canberra 1994

Conclusions

Ideas for IMaCh

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering
IMaCh
The complex
case
The advantage
of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

- Detecting when the likelihood is flat among a particular direction (ideas?).
- Suppressing the recovery parameters a_{21} and b_{21}, reducing from 8 to 6 parameters from the estimation.
- Skipping the computation of the period prevalence.

Ideas for IMaCh

IMaCh irreversibility

Nicolas

- Detecting when the likelihood is flat among a particular direction (ideas?).
- Suppressing the recovery parameters a_{21} and b_{21}, reducing from 8 to 6 parameters from the estimation.
- Skipping the computation of the period prevalence.
- Fixing arbitrary values of a_{21} and b_{21} in order to keep the program unchanged.
- Keeping the computation of the period prevalence.

Core of IMaCh and design variables I

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

- Core of IMaCh , currently too complex in managing design variables.

```
cov[1]=1.;
cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
for (k=1; k<=cptcovn;k++) // V1+V2+...
    cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
for (k=1; k<=cptcovage;k++) // V1*age
    cov[2+Tage[k]]=\operatorname{cov}[2+Tage[k]]*\operatorname{cov [2];}
for (k=1; k<=cptcovprod;k++) // V1*V2 + V3*V4
    cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*
        nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
```

- IMaCh has to be simplified before being designed for new purposes.
- Agnès Lièvre implemented the 'easy' use of a unique design variable V1 coded for example:
- 1 (low education)
- 2 (middle)
- 3 (high).

Core of IMaCh and design variables II

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

- IMaCh no more treats such variables because of lot of confusions in the analyses of results.
- Current IMaCh needs 2 covariates for this unique 'education' dimension V1 and V2:
- low education is for example the reference (coded 00);
- middle (coded 1) vs low (0) is V1;
- high (coded 1) vs low (0) is V2.
- More complex but correct results and easier program to maintain.

Optimal delay between two waves I

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the reversibility

If we only know that an individual died before time h without any more precision on the exact age at death, its contribution to the likelihood is simply $(1-p(h))$ where $p(h)$ is the probability to survive until time h. On the opposite if an individual survived after time h, its contribution is still $p(h)$. The total likelihood for n individuals is then:

$$
\begin{align*}
& L=(1-p)^{d} p^{n-d}, \quad \text { and its logarithm } \tag{2}\\
& \log (L)=d \log (1-p)+(n-d) \log (p) \tag{3}
\end{align*}
$$

where d is the number of individuals dead before time h.

Optimal delay between two waves II

IMaCh irreversibility

Nicolas Brouard and Karine Pérès

Remembering IMaCh
case
The advantage of the
reversibility
Using some facilities of IMaCh

Ideas for the

Let us notate $\tilde{p}=\left(1-\frac{d}{n}\right)$ the observed proportion of survivors (at time h), then first and second derivatives of the loglikelihood are:

$$
\begin{align*}
\frac{\partial \log (L)}{\partial p} & =n \frac{\tilde{p}-p}{p(1-p)} \tag{4}\\
\frac{\partial^{2} \log (L)}{\partial p^{2}} & =n \frac{p^{2}-2 p \tilde{p}+\tilde{p}}{p^{2}(1-p)^{2}} \tag{5}
\end{align*}
$$

Clearly the maximum likelihood estimator (MLE) \hat{p} of p is \tilde{p}. And the Fisher's information at \hat{p} is the classical formula of the variance of a binomial law:

$$
\begin{equation*}
\left[\frac{\partial^{2} \log (L)}{\partial p^{2}}\right]^{-1}=\frac{\tilde{p}(1-\tilde{p})}{n} \tag{6}
\end{equation*}
$$

Optimal delay between two waves III

IMaCh irreversibility

Nicolas Brouard and Karine Pérès

Remembering IMaCh

Let us now suppose again that the force of mortality is constant between age a and $a+h$:

$$
\begin{align*}
p(a) & =\exp (-\mu(a) h) \tag{7}\\
\mu(a) & =K \exp (a) \tag{8}
\end{align*}
$$

Also, $\log (h)$ is a better scale of time:

$$
\begin{equation*}
h=\exp (k) . \tag{9}
\end{equation*}
$$

Some easy computations described below will exhibit the MLE of a and its variance:

$$
\begin{aligned}
\frac{\partial \log (L)}{\partial a} & =\frac{\partial \log (L)}{\partial p} \frac{\partial p}{\partial a} \\
\frac{\partial^{2} \log (L)}{\partial a^{2}} & =\frac{\partial^{2} \log (L)}{\partial p^{2}}\left[\frac{\partial p}{\partial a}\right]^{2}+\frac{\partial \log (L)}{\partial p} \frac{\partial^{2} p}{\partial a^{2}}
\end{aligned}
$$

Optimal delay between two waves IV

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the
reversibility

The MLE of a is $\hat{a}=p^{-1}(\hat{p})=\log (-\log (\hat{p}))-k$ after a particular time h of observation.
Fisher's information computed at point \hat{a} is then:

$$
\begin{equation*}
\left[\frac{\partial^{2} \log (L)}{\partial a^{2}}\right]^{-1}=\left[\frac{\partial^{2} \log (L)}{\partial p^{2}}\left[\frac{\partial p}{\partial a}\right]^{2}\right]^{-1}=\frac{1-\tilde{p}}{n \tilde{p} \log ^{2}(\tilde{p})} . \tag{10}
\end{equation*}
$$

The last function has a minimum for $p=0.20319=1-0.7968$, which means that whatever the incidence level the optimum delay for the second pass is when about 80% of the initial cohort have already died.

Delay between waves should vary and are usually too short I

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering IMaCh
The complex case
The advantage of the reversibility

- According to the former result concerning a simple life table, we can extrapolate to other incidences like disability or recovery.
- With an incidence of μ per year, the optimal delay is $\frac{-\log (0.2)}{\mu}$ years.
- Taking the age of 90, with a risk dying or entering disability of 0.2 per year, the optimal delay is $\frac{-\log (0.2)}{0.2}=8$ years.
- At 80 , with a risk dying or entering disability of 0.1 per year, the optimal delay is $\frac{-\log (0.2)}{0.1}=16$ years.
- At 70, with an incidence to recovery of 0.1 per year, the optimal delay is also $\frac{-\log (0.2)}{0.1}=16$ years.
- These are rather long delays compared to 2 to 5 years used in standard LSOAs.

Delay between waves should vary and are usually too short II

IMaCh irreversibility

Nicolas

- Contradiction when having the same delay for measuring incidence of disability (longer delays are needed for young <70) and recovery (low levels and longer delay at old ages).
- The loss of follow-up being the main reason of shortening the delay but short delays are far from optimum, partly explaining the non convergence (lack of cases).

Conclusions I

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering
IMaCh
The complex
case
The advantage
of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay between two waves REVES Canberra 1994

Conclusions

- Low level of recovery incidences are not estimated by current IMaCh and are blocking estimates of other incidences.
- Some workarounds presented let you investigate the irreversibility.

Conclusions II

IMaCh irreversibility

Nicolas
Brouard and Karine Pérès

Remembering

The complex
case
The advantage
of the
reversibility
Using some facilities of IMaCh

Ideas for the future of IMaCh

Optimal delay
between two waves REVES Canberra 1994

Conclusions

- IMaCh has to be simplified before being designed for new purposes.
- Thanks for your attention

[^0]: ${ }^{1}$ brouard@ined.fr French National Institute for Population Studies (INED) Paris
 ${ }^{2}$ Karine.Peres@isped.u-bordeaux2.fr Epidemiology and neuropsychology of brain aging, ISPED/INSERM Bordeaux

