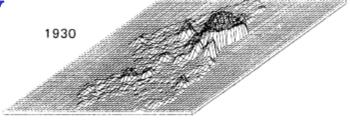
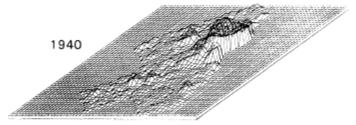
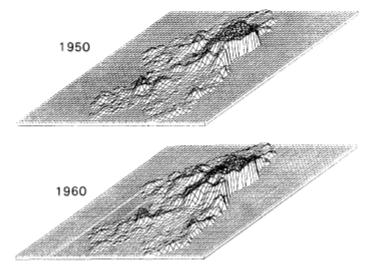
Spatial regression models: from theory to practice

Herrmann FR¹, Robine JM², Saito Y³

 ¹ Dept of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Switzerland
 ² National Institute on Health and Medical Research, INSERM U988 and U710, France
 ³ Nihon University Advanced Research Institute for the Sciences and Humanities, Tokyo, Japan




Institut national de la santé et de la recherche médicale


Waldo R. Tobler's (1930 -) 1st law of geography

"Everything is related to everything else, but near things are more related than distant things."

W. R. Tobler, A computer movie simulating urban growth in the Detroit region *Economic Geography* **46**, **234-240** (**1970**)

Actual population growth, Detroit Region (non-linear vertical scale).

- 1. Background
- 2. Spatial data
- 3. Spatial Autocorrelation / Neighbour
- 4. Spatial regressions
- 5. Centenarian rates and climate conditions

AIM

- Describe spatial regression techniques
- Illustrate their use in the study of the association

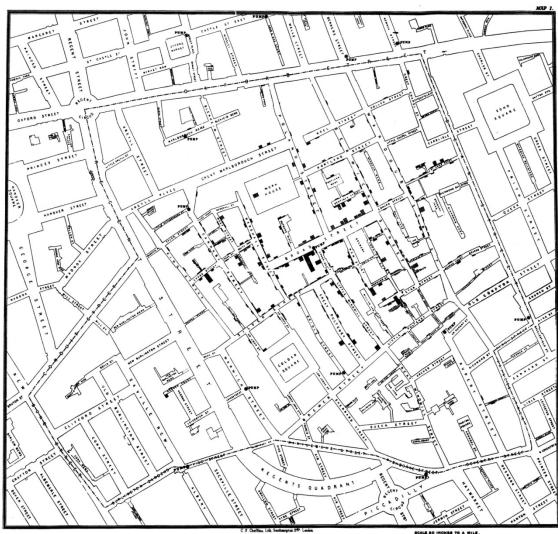
of geographic, climatic and longevity data from

Japan.

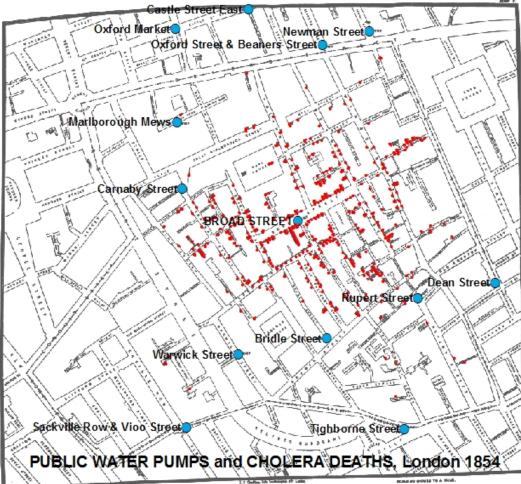
Deaths from cholera in 1854 compared with calculated mortality

31 Sub-Districts of deaths mathematical model Estimated population supplied with water as under. Calculated mortality in the population, supplied with water as under. hs from chol in 1804. 1881. 5 Southwark and Vauxhall Co. Registration Districts. Registration Sub-Districts. ation. Lambeth Co. at 27 par 10,000. ő Deaths per 10,000 living The two Companies Southwark a Vauxhall Co. 160 per 10,00 th Compa together. đe Calculat deaths per l supplied b Lambeth Pop [ota] 16,022 St. Saviour, Southw. Christchurch -2,915 13,234 16,149 113 71 46 36 57 St. Saviour -19,709 16,337 898 17,235 378 192 261 263 153 2 8,015 8,745 161 St. Olave St Olave - -0 8,745 901 140 0 140 160 9,300 152 St. John, Horselydown 11,360 9,360 0 134 150 n. 150 160 18,899 23,173 693 23,866 362 192 370 372 Bermondsey St. James - - -2 156 St. Mary Magdalen 17,258 247 177 13.934 17.258 276 276 - 0 0 160 Leather Market -15.295 14,003 1,092 15.095 237 155 994 227 3 150 177 St. George, Southw. Kent Road 18.126 12,630 3.997 16.627 98 202 11 213 134 Borough Road 15,862 8,937 6,672 15,609 271 171 143 18 161 104 London Road . 17,836 2,872 11,497 14,369 95 53 46 31 79 55 211 101 Newington - -Trinity . . 20,922 10,132 8,370 18,502 162 22 184 99 391 131 St. Peter, Walworth 29.86114,274 10,724 24,998 228 29 257 103 2,983 92 66 15 63 St. Mary 14,033 5,484 8,167 48 74 Lambeth - - -14,088 15,487 59 42 1. Waterloo, part 1 3,548 11,939 57 31 86 55 . Waterloo, part 2 18,348 7,171 12,033 19,704 118 64 115 34 149 76 18,409 3,113 15,878 18,991 49 27 3. Lambeth church, pt. 1 50 43 93 49 26,784 7,868 23,891 195 73 126 43 4. Lambeth church, pt. 2 16,023 167 71 24,261 15,775 2,708 18,483 305 126 953 7 260 5. Kennington, part 1 146 6. Kennington, part 2 18,848 7,874 5,620 13,494 143 75 12615 141 105 33 Brixton 14,610 1,922 9,356 11,278 48 31 25 56 49 10 25 1.066 3 3.977 0 1,066 0 3 28 Norwood Wandsworth 167 103 108 16,290 6,747 134 6,881 0 108 . Clapham 158 171 162 100 2. Battersea 10,560 6,276 276 6,552 1 101 152 Wandsworth 9,611 907 94 1,001 59 61 15 0 15 149 . Putney 5,280 74 0 74 Ð 17 1 0 1 160 9,023 3,244 3,244 15 17 0 9 . Streatham 0 9 27 1,632 0 0 . Dulwich 0 25 25 0 0 0 Camberwell 0 17,742 9,139 639 9,778 243 136 146 2 148 2. Camberwell 151 175 90 87 1 3. Peckham -19,444 5,438 392 5,830 88 151 1. St. George 15,849 4,295 5,437 9,732 132 83 69 15 84 86 159 17,805 12,218 12,218 283 196 0 196 Rotherhithe 0 160 Rotherhithe 28,929 52,267 23,338 Houses supplied in streets where no death occurred •• •• •• •• Houses not identified 2,712 165 2,877 •• •• •• •• ••• 105 482,435 267,625 171,528 439,153 5,067 4,282 462 4,744 Totals 108 266,516 173,748 440,264 4,267 473 4,740 Population as estimated by the Registrar-General ... •• •• 108

Actual number

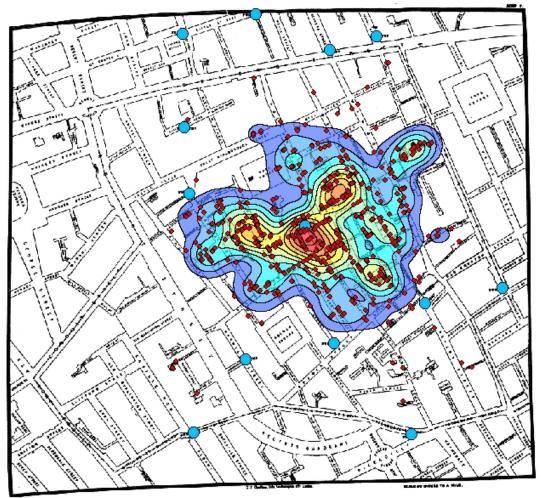

Predicted deaths by

Snow, "Cholera and the water supply in the south districts of London," Table 6


http://johnsnow.matrix.msu.edu/book_ images10.php

John Snow's Original map (1854)

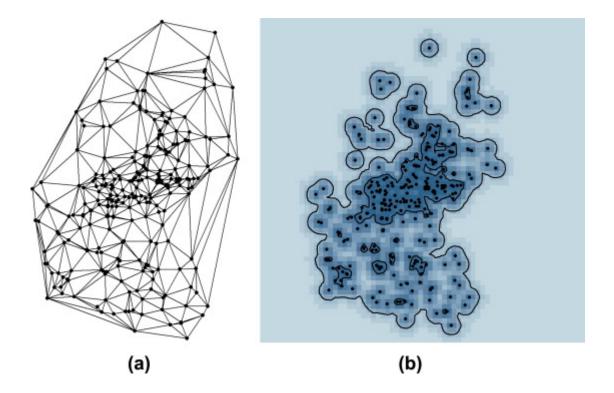
Snow, John. On the Mode of Communication of Cholera, 2nd Ed, John Churchill, New Burlington Street, London, England, 1855.



John Snow's Map of cholera deaths London 1854

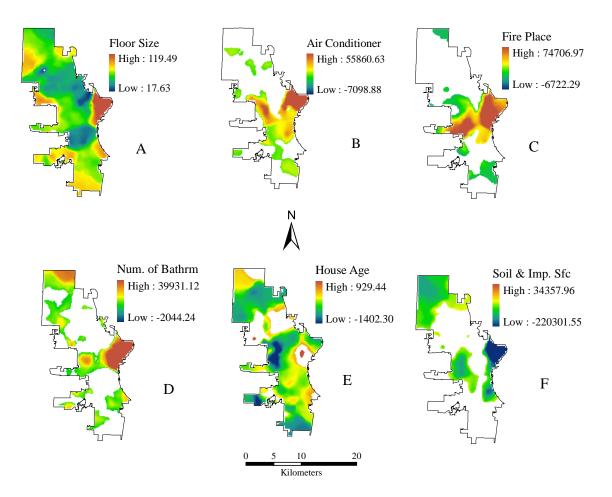
http://www.udel.edu/johnmack/frec682/cholera/cholera2.html

Kernel Density to calculate the spatial densities of deaths around each of the wells



http://www.udel.edu/johnmack/frec682/cholera/cholera2.html

Animal movements


Global positioning system (GPS) and satellite tracking

Delaunay triangulation model of movement trajectories (a) and corresponding density surface, home range, and core area delineation (b) for a Florida panther.

J. A. Downs et al., Computers, Environment and Urban Systems 36, 302-310 (2012).

Housing price in Milwaukee

From Geographically weighted regression By Danlin Yu Yehua Dennis Wei Dept. of Geog., UWM

Background

Botanic Ethology Epidemiology Economics Computer science **Mathematics Statistics** Geographic information system (GIS) plant distributions
animal movements
disease mapping
spatial econometrics
computational geometry
fractals
spatial statistics

Adapted from: http://en.wikipedia.org/wiki/Spatial_analysis

Spatial data

• Points

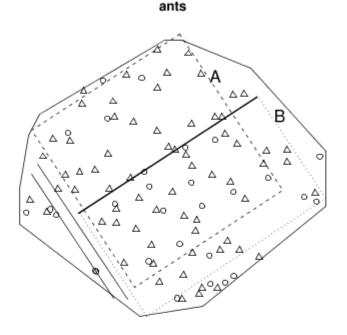
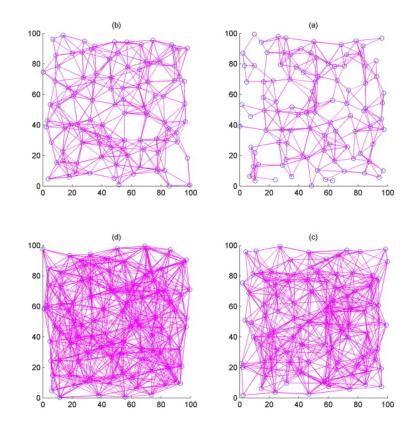
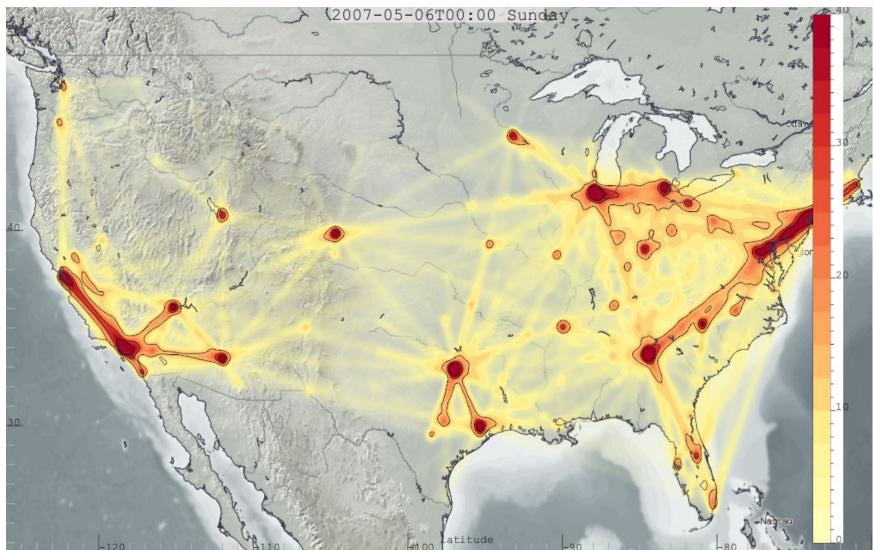
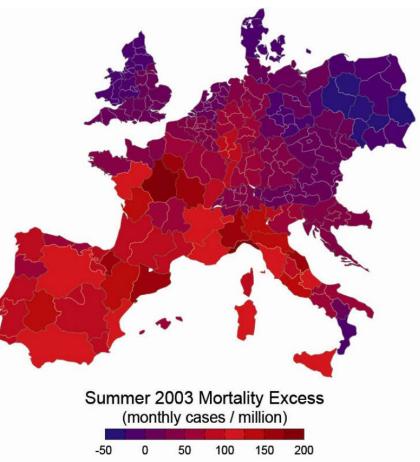



Figure 4: Harkness-Isham ant nests data. Map of the locations of nests of two species of ants, *Messor wasmanni* (\triangle) and *Cataglyphis bicolor* (\bigcirc) in an irregular region 425 feet in diameter. Data kindly supplied by Professors R.D. Harkness and V. Isham.

From Baddeley A et Turner R. **Spatstat: An R Package for Analyzing Spatial Point Patterns;** J. of Statistical Software 12(6) 2005 http://www.mendeley.com/catalog/journal-statistical-software-24/#page-1


Spatial data

M. Jalili *et al.*, Weighted coupling for geographical networks: Application to reducing consensus time in sensor networks *Physics Letters A* **374**, **3920-3925** (2010).


- Points
- Lattice

Air trafic interactive visualization of streaming data with kernel density estimation

Spatial data

- Points
- Lattice
- Area

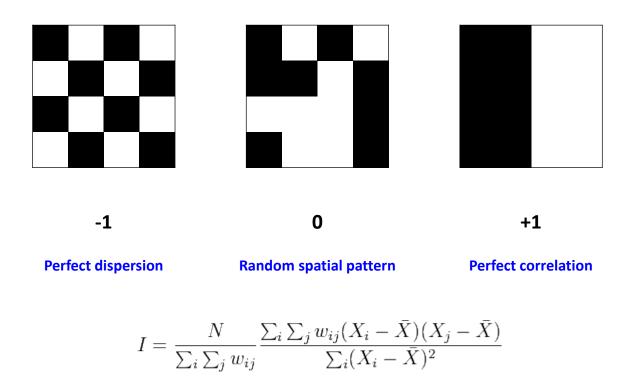
J. Ballester, JM Robine, FR Herrmann, X Rodó. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. *Nat Commun* 2:358 (2011)

Spatial data

- Key components of spatial data:
 - Spatial information (coordinates)
 - Attributes

J. Ballester et al., Nat Commun 2:358 (2011)

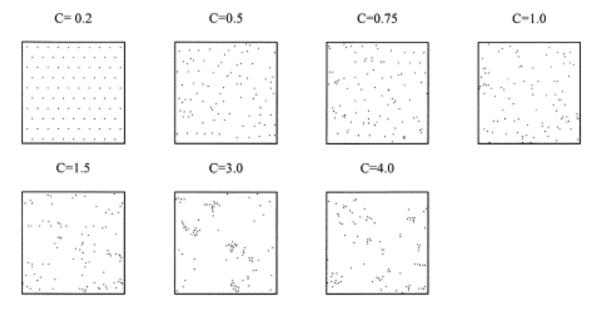
Spatial Autocorrelation


Test for the presence of spatial autocorrelation

– Global

- Moran's I
- Geary's C
- Local (LISA Local Indicators of Spatial Autocorrelation)
 - Local Moran's I and Getis G_i^*

www.clas.ufl.edu/**user**s/forrest/teaching_geo.html Forest R. Stevens, University of Florida 2012

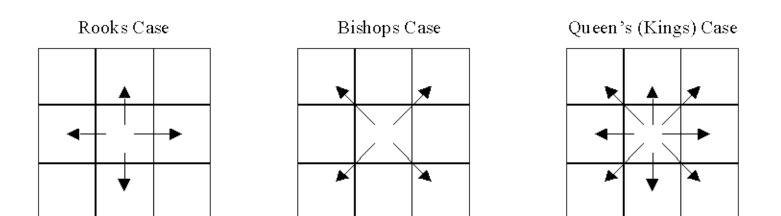

Moran's I

http://en.wikipedia.org/wiki/Moran%27s_I

C measure of non-randomness

• Points

 $C = \frac{\sum r_{lp}^2}{\sum r_{pp}^2}$


 r_{lp} distance from random location to its nearest points r_{pp} distance from sample points to nearest pointPielou, E. C. (1969)

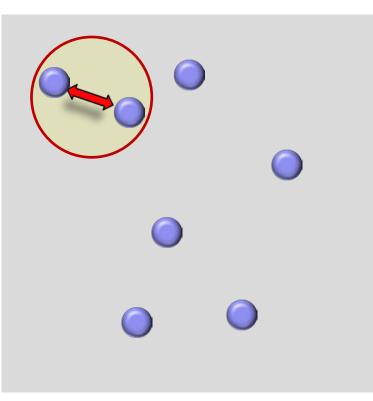
N. Coops et al., Remote Sensing of Environment 71, 248-260 (2000).

Spatial Weights Matrices

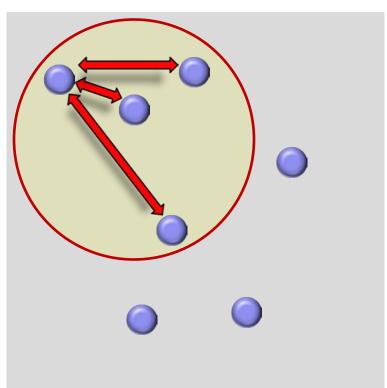
Neighborhoods can be defined in multiple ways

- Contiguity (common boundary)
 - But what is a "shared" boundary?

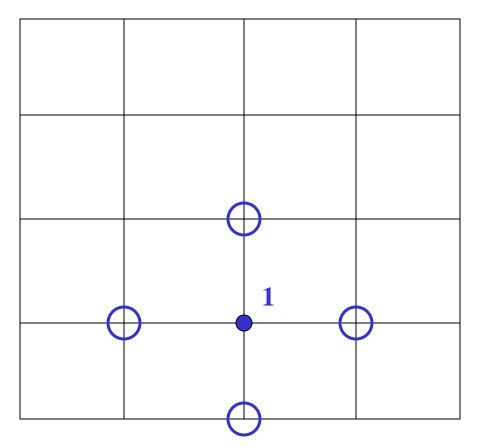
www.clas.ufl.edu/**user**s/forrest/teaching_geo.html Forest R. Stevens, University of Florida 2012

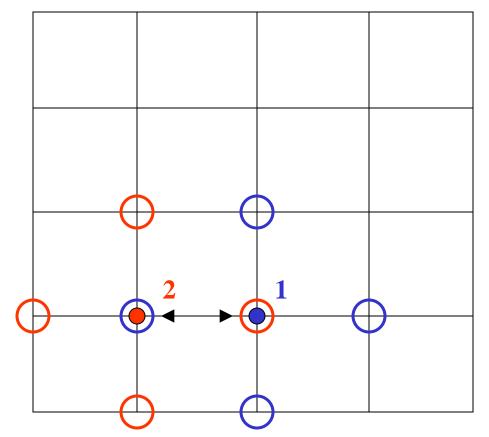

Spatial Weights Matrices

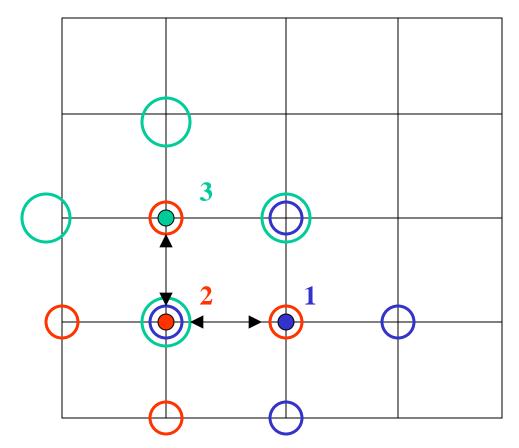
Neighborhoods can be defined in multiple ways

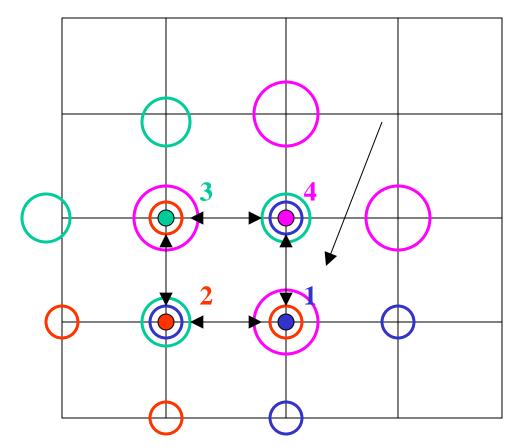

- Contiguity (common boundary)
 - But what is a "shared" boundary?
- **Distance** (distance band, K-nearest neighbors)
 - How many "neighbors" to include, what distance do we use?
- General weights (social distance, exponential decay)

Neighbours and bandwidth W spatial weight matrix

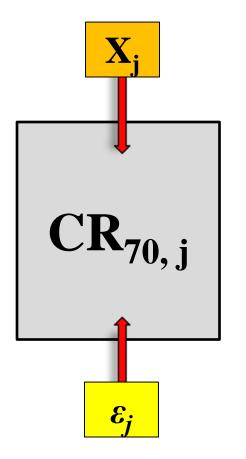

1 Neighbor Distance Band 1 unit


3 Neighbors Distance Band 2 units


Intuition: you are your neighbours neighbour


Intuition: you are your neighbours neighbour

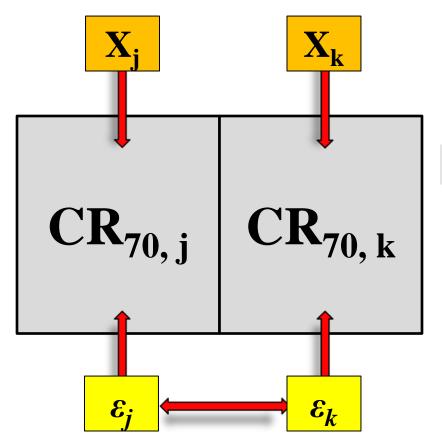
...and your neighbour's neighbour's neighbour's neighbour's neighbour...



...and your neighbour's neighbour's neighbour's neighbour's neighbour...

Shocks at 1 affect 2 and 4 directly And 3 indirectly via 2 and 4 Shocks at 1 get reflected back to 1 from 2 and 4 And from 2 to 3 to 4 to 1 etc...

Linear regression models

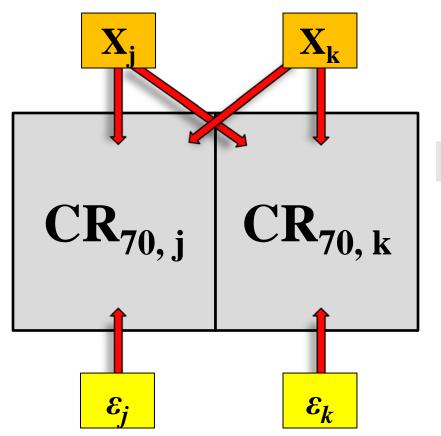

 $CR_{70} = \beta_0 + \beta_1 X + \varepsilon$

Linear Regression

- When applied to spatial data, it assumes a stationary spatial process
 - The same stimulus provokes the same response in all parts of the study region
 - Highly untenable for spatial process

From Geographically weighted regression By Danlin Yu Yehua Dennis Wei Dept. of Geog., UWM

Spatial error regression models

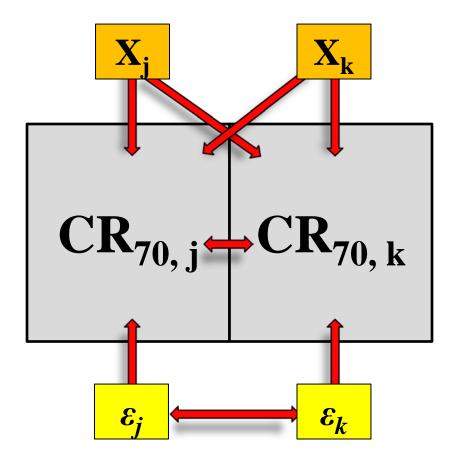

$$CR_{70} = \beta_0 + \beta_1 \frac{X}{X} + u$$

$$\frac{u}{\omega} = \lambda W \rho + \varepsilon$$

W spatial weight matrix, λ degree of spatial autocorrelation $\lambda > 0$: neighbors are similar $\lambda < 0$: neighbors are dissimilar

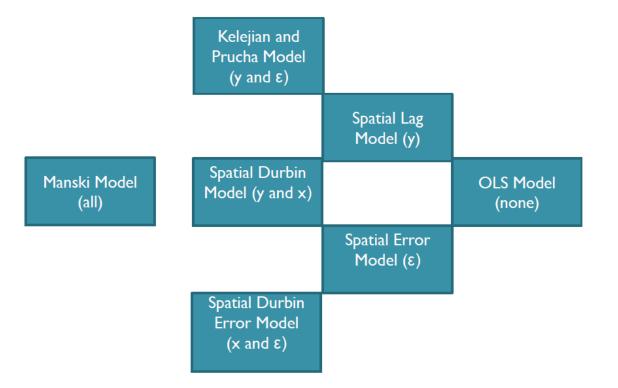
Addapted from Lab 9..pdf Spatial Regression. SOC 261, Spring 2005. Spatial Thinking in Social Science www.s4.brown.edu/s4/courses/SO261.../lab9.pdf

Spatial lag regression models



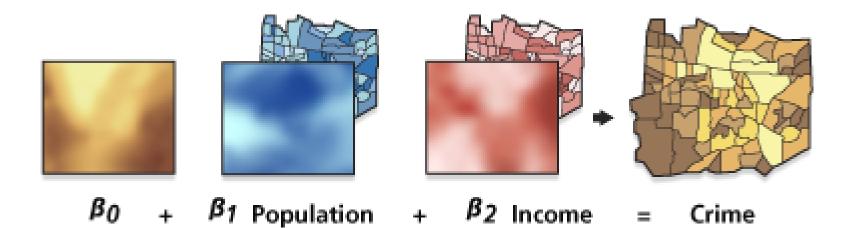
 $CR_{70} = \lambda W \rho + \beta_1 X + \varepsilon$

W spatial weight matrix, λ degree of spatial autocorrelation $\lambda > 0$: neighbors are similar $\lambda < 0$: neighbors are dissimilar


Addapted from Lab 9..pdf Spatial Regression. SOC 261, Spring 2005. Spatial Thinking in Social Science www.s4.brown.edu/s4/courses/SO261.../lab9.pdf

Manski regression models

Addapted from Lab 9..pdf Spatial Regression. SOC 261, Spring 2005. Spatial Thinking in Social Science www.s4.brown.edu/s4/courses/SO261.../lab9.pdf


Combinations of lagged error, lagged dependent, and lagged

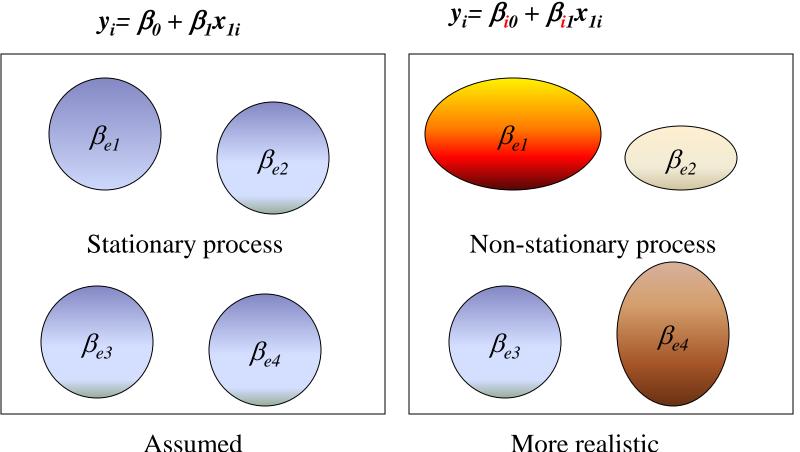
From: Fowler Christopher S. CSDE Statistics Workshop 3.5.2011 University of Washington Center for Studies in Demography and Ecology

http://csde.washington.edu/services/gis/workshops/Resources/SPREG_Presentation.pdf

Geographically Weighted Regression (GWR)

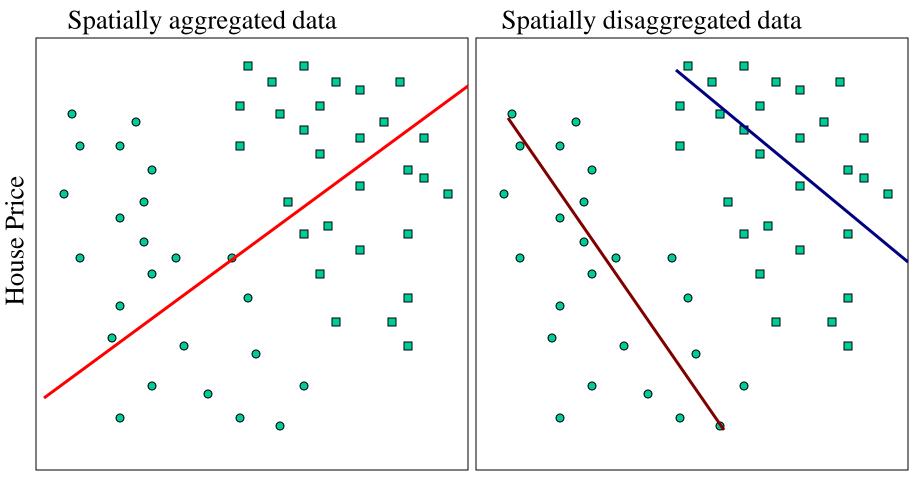
http://webhelp.esri.com/arcgisdesktop/

Linear regression models


$$y_i = \beta_0 + \sum_{k=1,m} \beta_k X_{ik} + \varepsilon_i$$

Geographically Weighted Regression (GWR)

$$y_{i} = \beta_{i0} + \sum_{k=1,m} \beta_{ik} X_{ik} + \varepsilon_{i}$$


Brunsdon C et al. Geographical Analysis, 28 (4); 1996

Stationary v.s. non-stationary

Assumed

Simpson's paradox

House density

House density

Global v.s. local statistics

- Global statistics
 - Similarity across space
 - Single-valued statistics
 - Not mappable
 - GIS "unfriendly"
 - Search for regularities
 - Aspatial

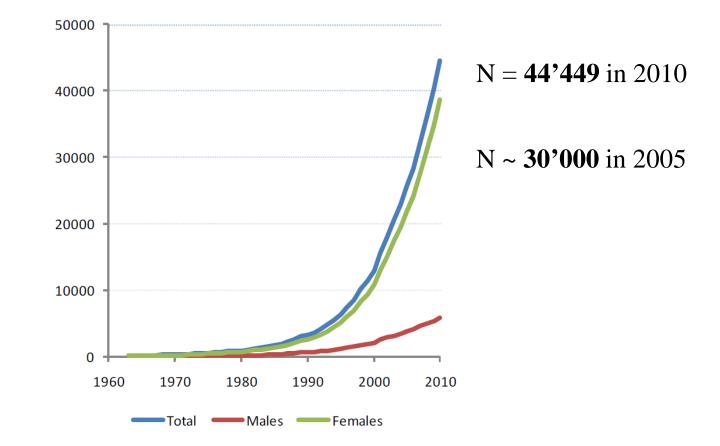
- Local statistics
 - Difference across space
 - Multi-valued statistics
 - Mappable
 - GIS "friendly"
 - Search for exceptions
 - Spatial

From Geographically weighted regression By Danlin Yu Yehua Dennis Wei Dept. of Geog., UWM

Spatial Regression

Steps in determining the extent of spatial autocorrelation in your data and running a spatial regression:

- 1. Choose a neighborhood criterion
 - Which areas are linked?
- 2. Assign weights to the areas that are linked
 - Create a spatial weights matrix
- 3. Run statistical test to examine spatial autocorrelation
- 4. Run an OLS regression
- 5. Run a spatial regression(s)
 - By applying weights matrices

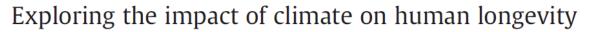

www.clas.ufl.edu/**user**s/forrest/teaching_geo.html Forest R. Stevens, University of Florida 2012

Plan

- 1. Background
- 2. Spatial data
- 3. Spatial Autocorrelation / Neighbour
- 4. Spatial regressions
- 5. Centenarian rates and climate conditions

Number of centenarians in Japan

Y. Saito et al., Demographic Research 26, 239-252 (2012).



Contents lists available at SciVerse ScienceDirect

Experimental Gerontology

Experimental Gerontology

journal homepage: www.elsevier.com/locate/expgero

Jean-Marie Robine ^{a,*}, François R. Herrmann ^b, Yasumichi Arai ^c, D. Craig Willcox ^{d,e,f}, Yasuyuki Gondo ^g, Nobuyoshi Hirose ^c, Makoto Suzuki ^{d,e,h}, Yasuhiko Saito ⁱ

^a National Institute on Health and Medical Research, INSERM U988 and U710, France

^b Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Switzerland

^c Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan

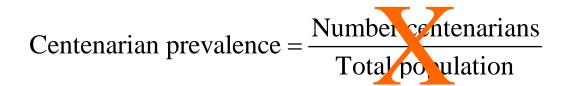
^d Department of Human Welfare, Okinawa International University ,Ginowan, Japan

^e Okinawa Research Center for Longevity Science, Urasoe, Japan

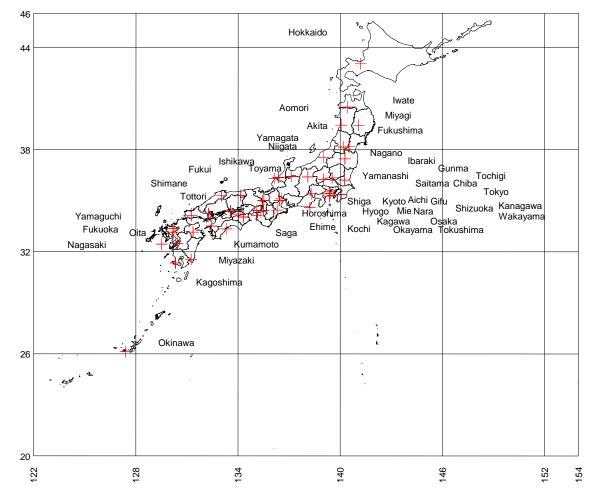
^f Department of Research, Kuakini Medical Center, HI, USA

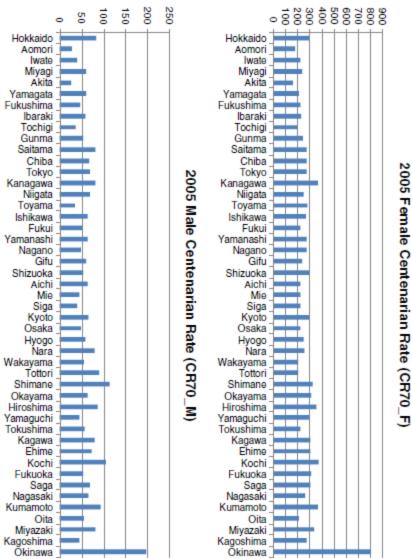
^g Osaka University, Graduate School of Human Sciences, Clinical Thanatology and Geriatric Behavioral Science, Osaka, Japan

^h Faculty of Medicine, University of the Ryukyus, Nishihara, Japan

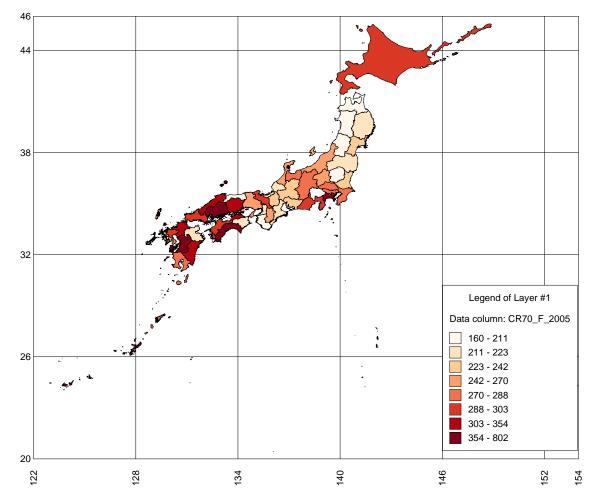

ⁱ Nihon University Advanced Research Institute for the Sciences and Humanities, Tokyo, Japan

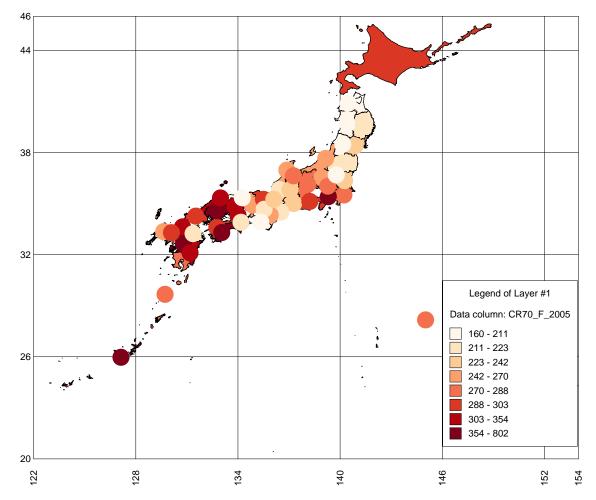
Question

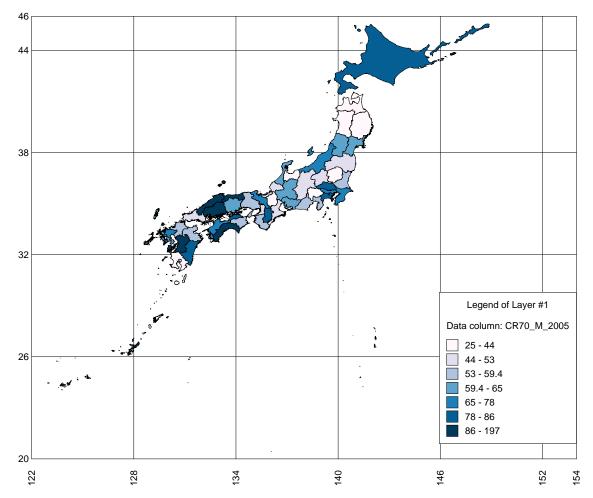

What is the impact of physical geographic factors and climate conditions on human longevity?

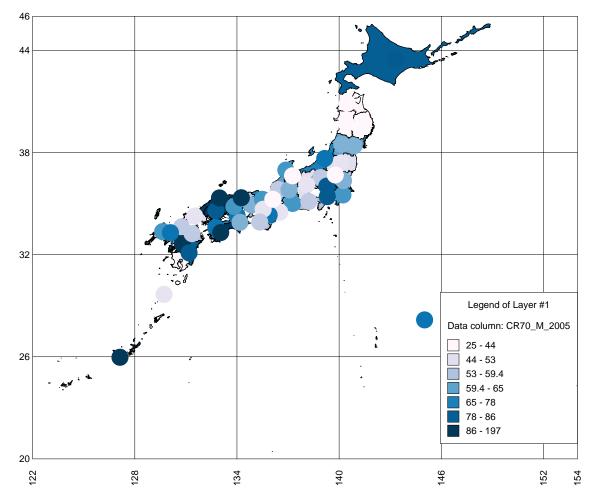

Robine JM, Herrmann FR, Arai Y, Willcox DC, Gondo Y, Hirose N, Suzuki M, Saito Y. *Exp Gerontol 2012;47(9):660-71*.

Methods


Japan 47 prefectures



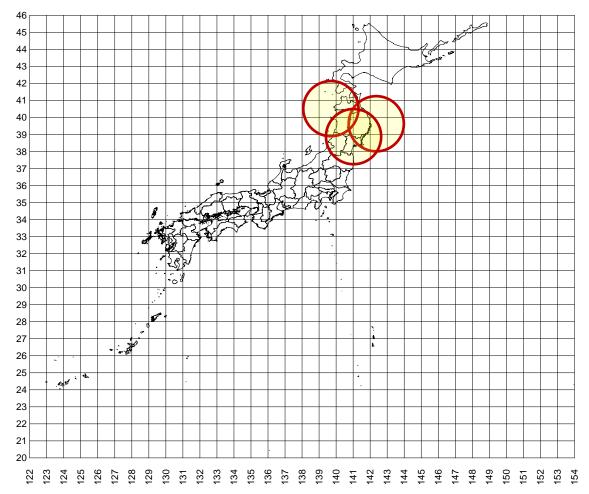

Female centenarian rate (CR₇₀)


Female centenarian rate (CR₇₀)

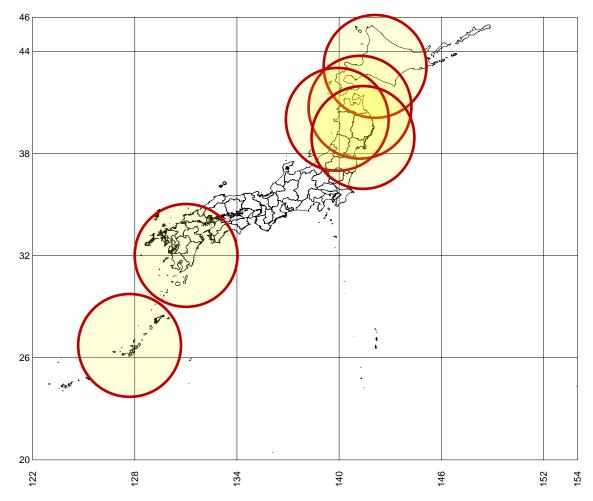
Male centenarian rate (CR₇₀)

Male centenarian rate (CR₇₀)

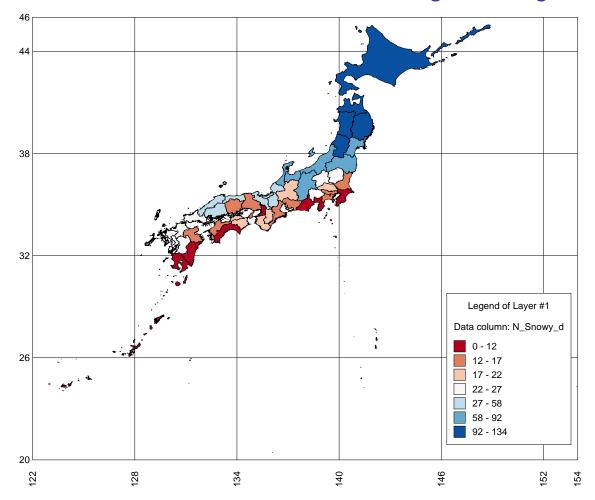
31 Independent variables


In 2005

- 3 Locations parameters (latitude, longitude, altitude)
- 4 physical and geographical factors (surface area occupied by mountains, hill land, upland and lowland)
- 8 land use and agriculture (forests, pastures, grasslands, rice, wheat, etc,...)
- 14 climate conditions (temperature, humidity, snowy days, etc..)
- Income per capita


In 1900

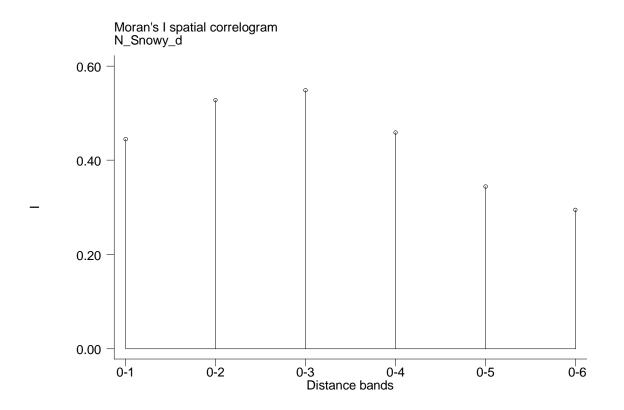
• Infant mortality rate (IMR)


Distance bands (0-3)

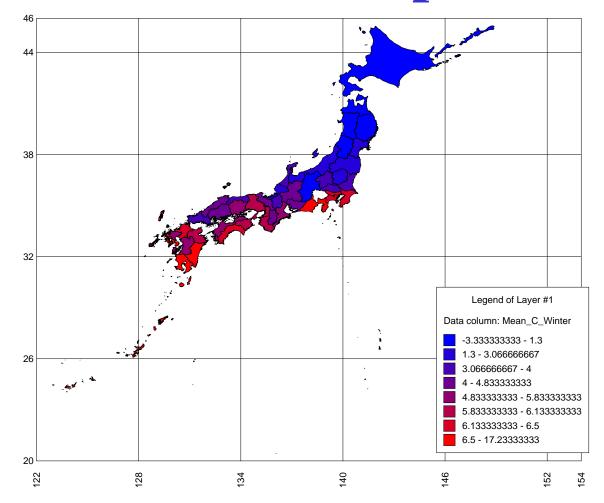
Distance bands (0-6)

Number of snowy days

of Snowy day


Moran's I spatial correlogram

N_Snowy_d


Distance bands	 I +	 E(I)	sd(I)	Z	p-value*
(0-1]	0.444	-0.022	0.144	3.248	0.001
(0-2]		-0.022	0.067	8.148	0.000
(0-3]	0.548	-0.022	0.052	10.883	0.000
(0-4]	0.459	-0.022	0.039	12.450	0.000
(0-5]	0.344	-0.022	0.030	12.313	0.000
(0-6]		-0.022	0.032	10.007	0.000

*1-tail test

Moran's I spatial correlogram

Mean winter temperature

Stepwise spatial lag regression models explaining variability in female centenarian rates (CR₇₀)

Step	Variable entered	Sign of β	Partial R ²	Model R ²	р
(i) All prefec	tures [47]				
1	Mean winter temperature	+	0.492	0.492	<.0001
2	Snowy weather days	+	0.119	0.611	0.0001
3	Average pressure	-	0.053	0.664	0.006
4	Infant mortality rates 1900	-	0.037	0.702	0.024
5	Maximum wind speed	-	0.027	0.729	0.027
6	Proportion hill land	+	0.044	0.773	0.002
7	Maximum precipitation per day	+	0.021	0.794	0.030

Distance bands : 0-6 degree when n=47

Stepwise spatial lag regression models explaining variability in male centenarian rates (CR₇₀)

Step	Variable entered	Sign of β	Partial R ²	Model R ²	р
(i) All prefe	ctures [47]				
1	Mean winter temperature	+	0.491	0.491	<.0001
2	Per capita income (1000 yen)	-	0.052	0.543	0.015
3	% Rice	-	0.045	0.588	0.031
4	Maximum wind speed	-	0.017	0.605	0.114
5	Snowy weather days	+	0.012	0.616	0.083

Distance bands : 0-6 degree when n=47

Table 9

Stepwise spatial lag regression models explaining variability in centenarian rates (CR70) by physical geographical factors, climate conditions, land use and socio-economical conditions (Per capita income 2005, infant mortality rates 1900) (Final model).

	le Centenarian Rate	e (CR70)						Male	Centenarian Rate ((CR70)					
Step	Variable entered	Sign of β	Partial R ²	Model R ²	р	rho	p(LM)	Step	Variable entered	Sign of β	Partial R_square	Model R_square	р	rho	p(LM)
(i) Al	ll prefectures [47]							(i) Al	l prefectures [47]						
1	Winter_T	+	0.492	0.492	< 0.0001	-0.535	0.348	1	Winter_T	+	0.491	0.491	< 0.0001	-1.036	0.033
2	Snowy_D	+	0.119	0.611	0.0001	-0.241	0.630	2	nIncome_PC	_	0.052	0.543	0.015	-0.961	0.047
3	Pressure	_	0.053	0.664	0.006	-0.173	0.694	3	% Rice	_	0.045	0.588	0.031	-1.038	0.030
4	IMR_1900	-	0.037	0.702	0.024	-0.521	0.316	4	Max_W_Sp	_	0.017	0.605	0.114	-0.963	0.043
5	Max_W_Sp	_	0.027	0.729	0.027	-0.465	0.347	5	Snowy_D	+	0.012	0.616	0.083	-0.631	0.222
6	% Hill land	+	0.044	0.773	0.002	-0.320	0.478								
7	Max_Rain	+	0.021	0.794	0.030	-0.417	0.350								
(ii) V	Vithout Okinawa ar	nd Hokkaid	lo [45]					(ii) W	/ithout Okinawa a	nd Hokkaid	o [45]				
1	Highest_T	+	0.334	0.334	0.021	0.587	<.001	1	T_snow	_	0.218	0.218	0.025	0.354	0.225
2	% Hill Land	+	0.060	0.394	0.044	0.622	<.001	2	Income PC	_	0.071	0.289	0.035	0.373	0212
3	IMR_1900	_	0.027	0.421	0.041	0.441	0.039	3	% Pastures	_	0.046	0.336	0.062	0.304	0.330
4	% Rice	_	0.035	0.456	0.074	0.393	0.070	4	% Rice	_	0.044	0.379	0.061	0.201	0.544
5	% Grassland	_	0.026	0.482	0.125	0.383	0.074								
CR70	Absolute Gender G	Gap (AGG)						CR70	Relative Gender G	ap (RGG)					
Step	Variable entered	Sign of β	Partial	Model	р	rho	p(LM)	Step	Variable entered	Sign of β	Partial	Model	р	rho	p(LM)
Step	Variable entered	Sign of β		Model R_Square	р	rho	p(LM)	Step	Variable entered	Sign of β		Model R_Square	р	rho	p(LM)
	Variable entered	Sign of β			р	rho	p(LM)		Variable entered	Sign of β			р	rho	p(LM)
		Sign of β			p <.0001	rho - 0.085				Sign of β			p 0.021	rho - 0.298	p(LM)
(i) Al	ll prefectures [47]		R_Square	R_Square				(i) Al	l prefectures [47]		R_Square	R_Square			
(i) Al	ll prefectures [47] Winter_T	+	R_Square	R_Square	<,0001	-0.085	0.879	(i) Al	l prefectures [47] T_snow	+	R_Square	R_Square	0.021	- 0.298	0.446 0.256
(i) Al 1 2	ll prefectures [47] Winter_T Snowy_D	++++	R_Square 0.441 0.138	R_Square 0.441 0.579	<.0001 0.000	-0.085 0.040	0.879 0.935 0.972	(i) Al 1 2	l prefectures [47] T_snow IMR_1900	+ _	R_Square 0.109 0.066	R_Square 0.109 0.175	0.021	- 0.298 - 0.470	0.446 0.256 0.275
(i) Al 1 2 3	ll prefectures [47] Winter_T Snowy_D Altitude	++++++	R_Square 0.441 0.138 0.072	R_Square 0.441 0.579 0.651	<.0001 0.000 0.002	- 0.085 0.040 0.015	0.879 0.935 0.972	(i) Al 1 2 3	l prefectures [47] T_snow IMR_1900 % Rice	+ - +	R_Square 0.109 0.066 0.060	R_Square 0.109 0.175 0.235	0.021 0.067 0.052	- 0.298 - 0.470 - 0.441	0.446 0.256 0.275
(i) Al 1 2 3 4	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900	++++	R_Square 0.441 0.138 0.072 0.037	R_Square 0.441 0.579 0.651 0.688	<.0001 0.000 0.002 0.022	- 0.085 0.040 0.015 - 0.343	0.879 0.935 0.972 0.524 0.587	(i) Al 1 2 3	l prefectures [47] T_snow IMR_1900 % Rice	+ - +	R_Square 0.109 0.066 0.060	R_Square 0.109 0.175 0.235	0.021 0.067 0.052	- 0.298 - 0.470 - 0.441	0.446 0.256 0.275
(i) Al 1 2 3 4 5	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900 % Hill land	+ + + + +	R_Square 0.441 0.138 0.072 0.037 0.034	R_Square 0.441 0.579 0.651 0.688 0.722	<.0001 0.000 0.002 0.022 0.015	- 0.085 0.040 0.015 - 0.343 - 0.279	0.879 0.935 0.972 0.524 0.587 0.670	(i) Al 1 2 3	l prefectures [47] T_snow IMR_1900 % Rice	+ - +	R_Square 0.109 0.066 0.060	R_Square 0.109 0.175 0.235	0.021 0.067 0.052	- 0.298 - 0.470 - 0.441	0.446 0.256 0.275
(i) Al 1 2 3 4 5 6	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900 % Hill land Max_W_Sp	++++++-++	R_Square 0.441 0.138 0.072 0.037 0.034 0.046	R_Square 0.441 0.579 0.651 0.688 0.722 0.768	<.0001 0.000 0.002 0.022 0.015 0.002	- 0.085 0.040 0.015 - 0.343 - 0.279 - 0.199	0.879 0.935 0.972 0.524 0.587 0.670 0.486	(i) Al 1 2 3	l prefectures [47] T_snow IMR_1900 % Rice	+ - +	R_Square 0.109 0.066 0.060	R_Square 0.109 0.175 0.235	0.021 0.067 0.052	- 0.298 - 0.470 - 0.441	0.446 0.256 0.275
(i) Al 1 2 3 4 5 6 7 8	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900 % Hill land Max_W_Sp Max_Rain Clear_D	+ + + + + + + + + +	R_Square 0.441 0.138 0.072 0.037 0.034 0.046 0.023 0.012	R_Square 0.441 0.579 0.651 0.688 0.722 0.768 0.791	<.0001 0.000 0.002 0.015 0.002 0.027	- 0.085 0.040 0.015 - 0.343 - 0.279 - 0.199 - 0.331	0.879 0.935 0.972 0.524 0.587 0.670 0.486	(i) Al 1 2 3 4	l prefectures [47] T_snow IMR_1900 % Rice Income_PC	+ - + +	R_Square 0.109 0.066 0.060 0.052	R_Square 0.109 0.175 0.235	0.021 0.067 0.052	- 0.298 - 0.470 - 0.441	0.446 0.256 0.275
(i) Al 1 2 3 4 5 6 7 8	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900 % Hill land Max_W_Sp Max_Rain	+ + + + + + + + + +	R_Square 0.441 0.138 0.072 0.037 0.034 0.046 0.023 0.012	R_Square 0.441 0.579 0.651 0.688 0.722 0.768 0.791	<.0001 0.000 0.002 0.015 0.002 0.027	- 0.085 0.040 0.015 - 0.343 - 0.279 - 0.199 - 0.331	0.879 0.935 0.972 0.524 0.587 0.670 0.486	(i) Al 1 2 3 4	l prefectures [47] T_snow IMR_1900 % Rice	+ - + +	R_Square 0.109 0.066 0.060 0.052	R_Square 0.109 0.175 0.235	0.021 0.067 0.052	- 0.298 - 0.470 - 0.441	0.446 0.256 0.275
(i) Al 1 2 3 4 5 6 7 8 (ii) V	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900 % Hill land Max_W_Sp Max_Rain Clear_D Vithout Okinawa ar	+ + + + + + + + + + +	R_Square 0.441 0.138 0.072 0.037 0.034 0.046 0.023 0.012 lo [45]	R_Square 0.441 0.579 0.651 0.688 0.722 0.768 0.791 0.803	<.0001 0.000 0.002 0.022 0.015 0.002 0.027 0.104	- 0.085 0.040 0.015 - 0.343 - 0.279 - 0.199 - 0.331 - 0.433	0.879 0.935 0.972 0.524 0.587 0.670 0.486 0.367	(i) Al 1 2 3 4 (ii) W	l prefectures [47] T_snow IMR_1900 % Rice Income_PC Vithout Okinawa an T_snow	+ - + + +	R_Square 0.109 0.066 0.060 0.052	R_Square 0.109 0.175 0.235 0.286	0.021 0.067 0.052 0.052	- 0.298 - 0.470 - 0.441 - 0.272	0.446 0.256 0.275 0.493
(i) Al 1 2 3 4 5 6 7 8 (ii) V 1	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900 % Hill land Max_W_Sp Max_Rain Clear_D Vithout Okinawa ar Highest_T % Hill Land	+ + + + + + + + + + + + + d Hokkaid	R_Square 0.441 0.138 0.072 0.037 0.034 0.046 0.023 0.012 0 [45] 0.277 0.071	R_Square 0.441 0.579 0.651 0.688 0.722 0.768 0.791 0.803 0.277 0.348	<.0001 0.000 0.022 0.015 0.002 0.027 0.104 0.045 0.033	- 0.085 0.040 0.015 - 0.343 - 0.279 - 0.199 - 0.331 - 0.433 0.545 0.582	0.879 0.935 0.972 0.524 0.587 0.670 0.486 0.367 0.001 <.0001	(i) Al 1 2 3 4 (ii) W 1	l prefectures [47] T_snow IMR_1900 % Rice Income_PC /ithout Okinawa au T_snow IMR_1900	+ + + + + +	R_Square 0.109 0.066 0.060 0.052 0.052	R_Square 0.109 0.175 0.235 0.286 0.286	0.021 0.067 0.052 0.052 0.052	- 0.298 - 0.470 - 0.441 - 0.272 0.125 0.078	0.446 0.256 0.275 0.493 0.754
(i) Al 1 2 3 4 5 6 7 8 (ii) V 1 2	ll prefectures [47] Winter_T Snowy_D Altitude IMR_1900 % Hill land Max_W_Sp Max_Rain Clear_D Vithout Okinawa ar Highest_T	+ + + + + + + + + + + + +	R_Square 0.441 0.138 0.072 0.037 0.034 0.046 0.023 0.012 0 [45] 0.277	R_Square 0.441 0.579 0.651 0.688 0.722 0.768 0.791 0.803 0.277	<.0001 0.000 0.002 0.022 0.015 0.002 0.027 0.104 0.045	- 0.085 0.040 0.015 - 0.343 - 0.279 - 0.199 - 0.331 - 0.433 0.545	0.879 0.935 0.972 0.524 0.587 0.670 0.486 0.367 0.001 <.0001	(i) Al 1 2 3 4 (ii) W 1 2	l prefectures [47] T_snow IMR_1900 % Rice Income_PC Vithout Okinawa an T_snow	+ + + + +	R_Square 0.109 0.066 0.060 0.052 0.052	R_Square 0.109 0.175 0.235 0.286 0.154	0.021 0.067 0.052 0.052	- 0.298 - 0.470 - 0.441 - 0.272 0.125	0.446 0.256 0.275 0.493 0.754 0.843

Distance bands : 0-6 degree when n=47, 0-3 degree when n=45

Rho

• Rho reflects the spatial dependence inherent in the data, measuring the average influence on observations by their neighboring observations.

LM

Lagrange multiplier test was used to test whether the spatial lag regression model differs statistically from a linear model.

Summary

About ³⁄₄ of the variance in CR70 for females and ¹⁄₂ for males are explained by the physical environment and land use, even when variations in the level of socio-economic status between prefectures are controlled.

Climate conditions like warm winter are associated with longevity.

Perspective

• Spatial demography

DEMOGRAPHIC RESEARCH

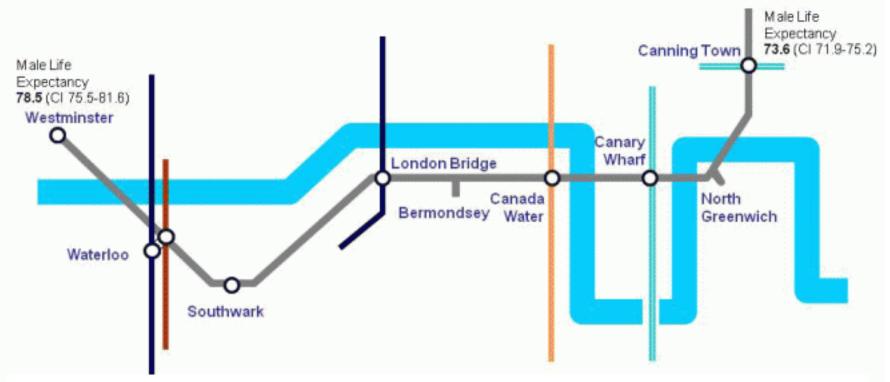
VOLUME 28, ARTICLE 10, PAGES 271-312 PUBLISHED 13 FEBRUARY 2013

http://www.demographic-research.org/Volumes/Vol28/10/ DOI: 10.4054/DemRes.2013.28.10

Research Article

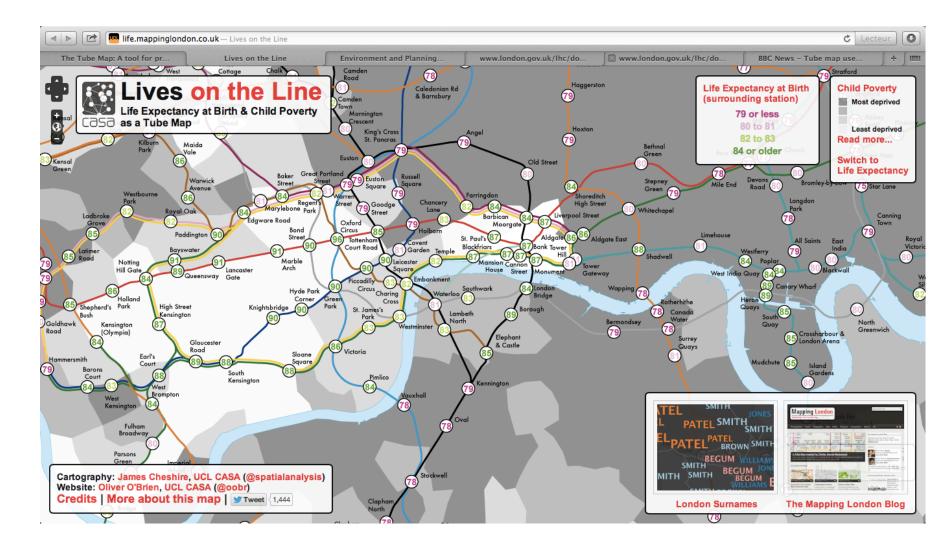
Progress in Spatial Demography

Stephen A. Matthews

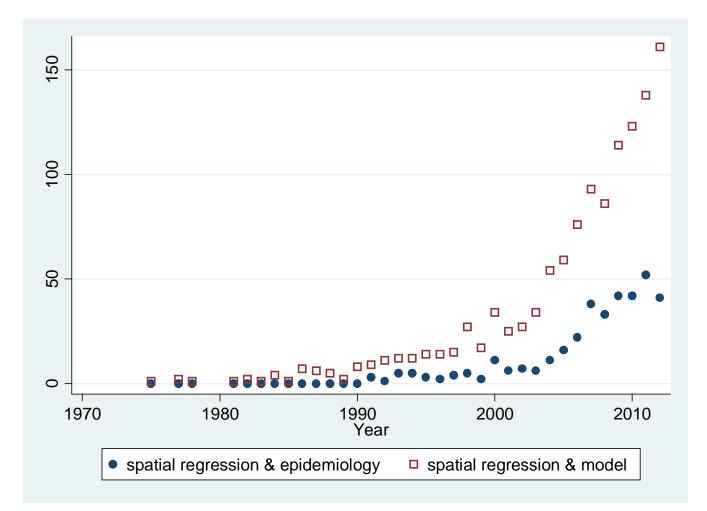

Daniel M. Parker

This publication is part of the Special Collection on "Spatial Demography", organized by Guest Editor Stephen A. Matthews.

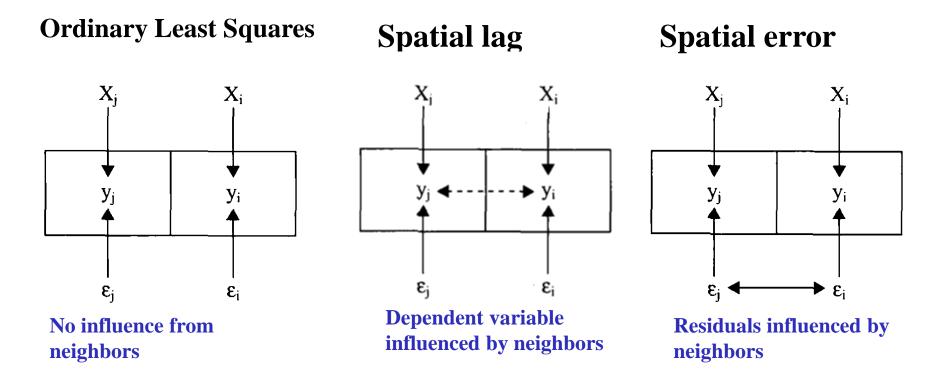
Perspective


- Spatial demography
- Time can also be added to spatial model
- HLE should also be measured at local levels and analyzed using spatial regression techniques

Differences in Male Life Expectancy within a small area in London Travelling east from Westminster, every two tube stops represent over one year of life expectancy lost —Data revised to 2004-08


Atkinson S, 2006 Health Inequalities in London: Where Are We Now?, http://www.london.gov.uk/lhc/docs/publications/healthinlondon/2006/Section02.pdf

Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. *Environment and Planning A*. 44 (7). Doi: 10.1068/a45341.



http://life.mappinglondon.co.uk

Bibliometry (Medline 11.2.2013)

Spatial Lag and Spatial Error Models: Conceptual Comparison

Baller, R., L. Anselin, S. Messner, G. Deane and D. Hawkins. 2001. *Structural covariates of US County homicide rates: incorporating spatial effects*,. Criminology , 39, 561-590

Briggs Henan University 2010