Comparison of methods and programs for calculating health life expectancies

Fiona Matthews, Vikki O'Neill, Carol Jagger

REVES - 28th May 2013

- Methods used to calculate health expectancies
- Data
 - CFAS Data
- Some preliminary results
 - ELECT
 - IMaCh
 - SPACE
- Future directions...?

inHALE Workstream on methodology

 Evaluates the different methods for calculating healthy life expectancy from both cross-sectional and longitudinal data sources.

- Which methods for cross sectional and longitudinal data are most robust in the presence of (i) missing data (ii) unequal time intervals?
- Which hypotheses can be reliably tested using cross sectional methodology?
- How large, how often and for how long? Study design issues for measuring HLE.

- Collation of methods for longitudinal and cross-sectional HALE
- Collecting some exemplar datasets to test methods
- Investigate similarities and differences

Methods used to calculate health expectancies

Cross-sectional

- The Sullivan method
- Repeated cross-sectional
 - The intercensal method
- Longitudinal
 - Discrete multi-state models
 - Continuous multi-state models
 - Increment decrement life tables

Methods used to calculate health expectancies

Cross-sectional

- The Sullivan method
- Repeated cross-sectional
 - The intercensal method
- Longitudinal
 - Discrete multi-state models
 - Continuous multi-state models
 - Increment decrement life tables

Methods used to calculate health expectancies

Cross-sectional

- The Sullivan method
- Repeated cross-sectional
 - The intercensal method
- Longitudinal
 - Discrete multi-state models \rightarrow IMaCh, SPACE
 - Continuous multi-state models \rightarrow ELECT
 - Increment decrement life tables

	Software:					
Scenario:	IMaCh	SPACE	ELECT	DD Life-table		
Rare disorder						
Common disorder						
No recovery						
Rare recovery						
Acceleration with age						
Uneven covariate structure						

	Software:				
Scenario:	IMaCh	SPACE	ELECT	DD Life-table	
Rare disorder	\checkmark	\checkmark	\checkmark		
Common disorder	\checkmark	\checkmark	\checkmark		
No recovery	N/A	\checkmark	\checkmark		
Rare recovery					
Acceleration with age					
Uneven covariate structure					

- MRC Cognitive Function and Ageing Study
- Scenarios
 - Cognitive impairment free life expectancy
 - Disability free life expectancy
 - Stroke free life expectancy

MRC Cognitive Function and Ageing study

CFAS

Data summary:

- ► Sample size: 13,004
- Classifications of Disability:
 - State 1: No Disability
 - State 2: Mild to Severe Disability
 - State 3: Death
- Classifications of Cognitive Impairment:
 - State 1: MMSE 18 30
 - ▶ State 2: MMSE 0 − 17
 - State 3: Death

For comparing software:

- No missing states at baseline
- No two events in same month
- Data right-censored at 12/2005

Disability

ELECT:

Estimation of Life Expectancies using Continuous-Time multi-state models

IMaCh:

A maximum likelihood computer program using Interpolation of Markov Chains

Disability

Disability

Disability: Comparison

Cognitive Impairment

ELECT:

Estimation of Life Expectancies using Continuous-Time multi-state models

IMaCh:

A maximum likelihood computer program using Interpolation of Markov Chains

Cognitive Impairment

Cognitive Impairment

Cognitive Impairment: Comparison

Future software

- New datasets to replicate results
- Investigate differences
- New scenarios to test the programs
- Search for other packages
- P ifferences with cross-sectional methods
- Study design issues

Future scenarios (and data?)

- Ultimately run a workshop at Reves in Edinburgh
- Write a guide on the different methods