Regional Differences in the Relationship Between Type 2 Diabetes and Healthy and Total Life Expectancy in the US ¹

> Scott M. Lynch Duke University

J. Scott Brown Miami University

2015

¹We acknowledge support for this research from NIA Grant R01AG040199

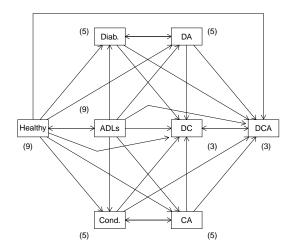
Purposes of presentation are substantive and methodological

• Substantive:

What are the implications of having Type 2 diabetes for subsequent health, and are there regional differences in these implications?

Methodological:

Can we extend multistate methods for more useful (e.g., more detailed) health analyses than the standard two state model?


- Diabetes is an important precursor to poor health in adulthood
- Diabetes prevalence varies by region in US: more prevalent in the south than other regions
- We've found regional distinctions are more apparent when region is measured based on where the respondent was <u>born</u> rather than where R. lives at time of interview
- Might expect management to be poorer for those with worse habits (i.e., based on birth region) and/or those in areas with less access to health care (i.e., based on current region)
- Questions: Does the impact of diabetes on subsequent health and mortality vary by region, and is the differential impact more pronounced when region is measured at birth?

Background: Methodological

- Multistate life tables (mslt) are useful, but we use them in a limited way: typicall only two live states
- But early mslts in family demography used multiple marital status states: why don't we use more states?
 - Marital status states are mutually exclusive, but...
 - Health states often not mutually exclusive, so we're stuck with trivial mutually exclusive states, like 1 ADL vs. 2 or more
- Overlapping state spaces commonly modeled with separate life tables for separate outcomes, but ignores relationships and sequencing between health states
- Here: Consider 3 overlapping health states
- Changing the radix, aggregating over some state expectancies, and computing various proportional expectancies enables detailed analyses health processes

State Space of Interest

- Death not shown but allowed from all states
- Retention not shown but allowed
- 43 possible transitions
- one transition (A-DC) has small n; recoded to A-DCA
- Verbrugge-Jette model may suggest H-D-DC-DCA-X as a common path: is it?

Data: Health and Retirement Study

- Panel with biennial waves from \sim 1998-2012 (n=37,319)
- Only ages 50+, interviewed in 1998, and not dropped by HRS
- Only one person per household (n = 13, 607)
- Drop persons born outside the US or out of the US in any wave or missing on all health measures (n = 12, 263)
- Data set consists of spells n = 66,869 spells:

Spell	п	Deaths		
1 ('98-'00)	12,263	911		
2 ('00-'02)	11,352	1023		
3 ('02-'04)	10,329	852		
4 ('04-'06)	9477	829		
5 ('06-'08)	8648	783		
6 ('08-'10)	7865	930		
7 ('10-'12)	6935	589		

Predictors

Variable	Measure	Descriptives		
Age Male Nonwhite Education	years dummy dummy years	68.4(10.9)[50,106] 44% 19% 12.0(3.2)[0,17]		
Birth Region	NE MW S (reference) W	21% 30% 41% 8%		
Current Region	NE MW S (reference) W	16% 26% 42% 16%		

Outcomes

Outcome	Constituent Measures	Measurement
Diabetes		Dummy (absorbing)
Conditions	Heart Disease Stroke Cancer Lung Disease	Dummy (1+; absorbing)
ADLs	Dressing Bedding Bathing Toileting Walking Eating	Dummy (1+; reversible)
Death		Dummy (absorbing)

State	Spell 1 (n=12,263)	Spell 7 (n=6935)
Healthy	48.4%	31.2%
ADLs	6.8%	4.8%
Conditions	21.7%	28.4%
Conditions + ADLs	9.0%	11.3%
Diabetes	5.4%	7.5%
Diabetes + ADLs	1.4%	1.7%
Diabetes + Conditions	4.4%	9.5%
All	2.9%	5.8%
Total Diabetic Prevalence	14.1%	24.4%
Total Condition Prevalence	38.0%	54.9%
Total ADL Prevalence	20.1%	23.5%

Observed Transitions

	Н	А	С	CA	D	DA	DC	DCA	Dead
Н	22,443	1495	1865	382	562	50	76	29	683
А	1030	1788	127	314	28	60	8*	18	478
С	0	0	12,780	2022	0	0	424	94	1349
CA	0	0	1115	3406	0	0	46	143	1788
D	0	0	0	0	3239	356	372	96	163
DA	0	0	0	0	214	481	42	119	157
DC	0	0	0	0	0	0	2879	795	512
DCA	0	0	0	0	0	0	462	1592	787
Dead	0	0	0	0	0	0	0	0	ALL

• n = 66,869 person-spells

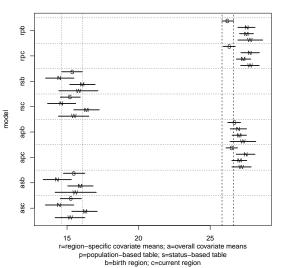
Assigned to DCA

• Of 81 possible transitions, 43 are non-structural 0s

- Estimate mlogit model with 42 outcomes (all transitions)
- **2** Retain coefficients ($\beta_{336\times 1}$) and ACOV matrix ($\Sigma_{336\times 336}$)
- Simulate 1000 sets of coefficients, $b \sim N(\beta, \Sigma)$
- For each b: Generate 61 (ages 50-110) age-specific transition probability matrices, p_{9×9}
 - covariates set at overall means (male=.44; nonwhite=.19; education=12) and region-specific means
 - region set to S, NE, MW, W (repeat for birth & current region), so $2\times8=16$ sets of 1000
- For each of the 16,000 collections of 61 p matrices, generate multistate life tables

Multistate Life Tables

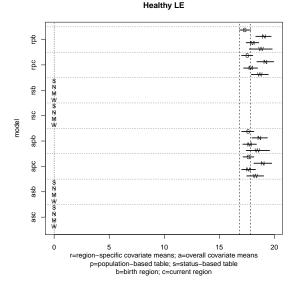
• Standard calculations:

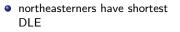

Calculation	Notes
$I_{x+1} = I_x p_{x,x+1}$	each I_x is 1×9
$L_x = (I_x + I_{x+1})/2$	linear method
$T_x = \sum_{i=x}^{\Omega} L_i$	
$e_x = T_x/I_x$	9 state expectancies, including death*

- State expectancies can be aggregated in various ways, e.g., diabetic life expectancy is $e_D + e_{DC} + e_{DA} + e_{DCA}$
- Repeat
 - for population-based tables: radix determined by outcome proportions at x = 50 from model results
 - If or status-based tables: radix set so all begin with diabetes (only) at x = 50
- Status-based tables allow us to evaluate implications of having type 2 diabetes, because it conditions on the desired state

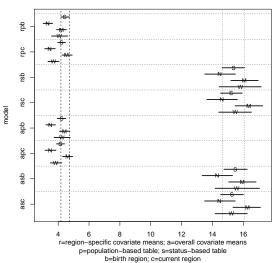
- Current multinomial probit method requires starting state as a covariate; doesn't work with living absorbing states, requiring change to outcomes-as-transitions approach
- Current method works well for two-state model but needs modification for higher dimensions
- Modifications in process; possibly important for addressing IIA assumption violation
- This approach is roughly equivalent to a Bayesian approach

Results 1: Total Life Expectancy ($TLE = \sum_{i=1}^{8} e^{i}$)

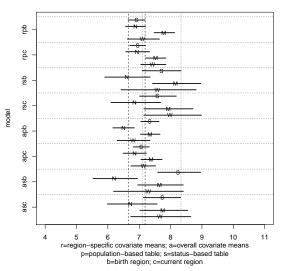

- TLE shortest for southerners...
- but not once covariates are equalized
- status based tables reveal little; TLE equivalent by region conditional on diabetes (no implications of region for life span after diabetes diagnosis)
- no birth v. current differences: patterns similar


Total LE

Results 2: Healthy Life Expectancy $(HLE = e^1)$

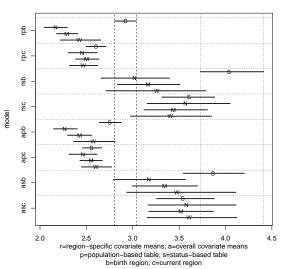

- southerners look worse than others...
- but not different from MW once covariates are equalized

Results 3: LE w/ Diabetes ($DLE = e^5 + e^6 + e^7 + e^8$)


- regional differences pronounced even after controls
- no TLE differences in status-based tables (i.e., DLE—D)

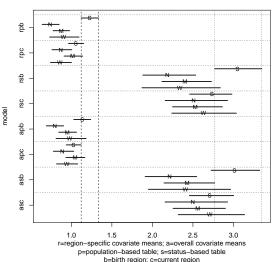
I F w/ Diabetes

Results 4: LE w/ Conditions ($CLE = e^3 + e^4 + e^7 + e^8$)


- midwest (birth) has longer condition time
- southerners with diabetes live longer with conditions than NE
- NE live shortest with condition
- overall regional differences slight

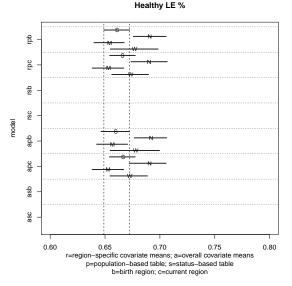
I F w/ Condition

Results 5: LE w/ ADLs ($ALE = e^2 + e^4 + e^6 + e^8$)

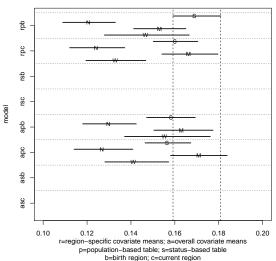

- Southern birth bad for LE with ADL
- difference mitigated only slightly with controls
- No current region differences
- (born) southerners with diabetes live longer with ADLs
- no current region differences

IF w/ ADIs

Results 6: LE w/ All Three Health Issues ($DCALE = e^8$)

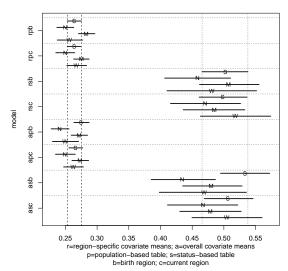

- southern birth=longest LE with DCA
- difference still exists with controls, but less pronounced
- no current region differences
- (born) southerners with diabetes live longer with all three
- but no current regional differences

IF w/ DCA


Results 7: Proportion of Life Healthy (HLE/TLE)

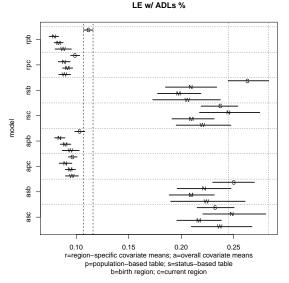
- NE stands out with highest HLE%
- S and MW have shortest
- but, western intervals are wide

Results 8: % of TLE to be Spent w/ Diabetes (DLE/TLE)

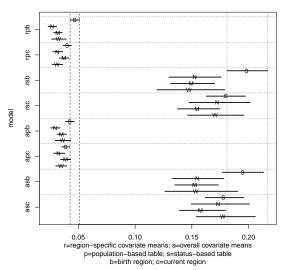

- southern birth=highest %DLE
- but MW is close
- with controls, NE appears lower than other three regions
- (note: status-based %DLE=1)

I F w/ Diabetes %

Results 9: % of TLE Spent w/ Conditions (CLE/TLE)


- no regional differences, except...
- diabetics born in the south have higher %CLE than persons born in NE
- this is AFTER adjustment for covariates

LE w/ Condition %


Results 10: % of TLE Spent w/ ADLs (ALE/TLE)

- persons born in the south live longer % with ADLs
- true even after adjustment for covariates
- true in status based models: southern born have longer %ALE
- less pronounced after controls

Results 11: % of TLE Spent w/ All 3 (DCALE/TLE)

- persons born in south have higher %DCA
- still true after controls
- true with and without controls for status based models

IF w/ DCA %

(Alternative) Summary of Results: p(South is worse)

	Population Based Results				Status Based Results			
	Bi	rth	Current		Birth		Current	
Measure	noc	w/c	noc	w/c	noc	w/c	noc	w/c
TLE (<)	100	77	99	91	53	44	57	49
HLE $(<)$	96	82	88	77	-	-	-	-
DLE*	86	59	69	61	46	54	42	48
CLE	30	82	20	42	60	90	49	66
ALE	100	95	82	57	99	91	65	45
DCALE	99	95	84	70	99	97	68	64
%HLE (<)	70	76	56	58	-	-	-	-
%DLE	97	66	75	65	-	-	-	-
%CLE	51	85	47	62	65	93	58	67
%ALE	100	98	97	72	100	90	70	48
%DCALE	100	96	89	75	99	97	73	67

* DLE is TLE in status based models, so this is the probability that persons from the south who have diabetes live longer after diagnosis.

- Regional differences are often pronounced, but less so after controlling for regional differences in composition
- However, even after controls, the south fares poorly
- Pattern is much more pronounced when region at birth is the measure (rather than region at time of interview)
- Diabetes is worse for southern born: more years and percent of remaining life spent with ADL limitations and conditions
- This pattern is ONLY pronounced based on birth region
- Results suggest that regional differences may be due to cultural influence rather than infrastructural differences
- Methods produce considerably more detail than two-state methods.