Healthy Life Expectancy, Mortality, and Age Prevalence of Morbidity

Tim Riffe, Alyson van Raalte
Is variation in health over the lifespan better characterized by chronological age or time-to-death?
Expected life years with disability (DLY): Sullivan Method

$$DLY = \frac{1}{\ell_0} \sum_{x=0}^{\omega} \pi_x L_x$$
But what is π_X exactly?

- **Disability prevalence at each age**
 - Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
 - Can also depend on future mortality if disability is patterned by time-to-death
 - Since π_X changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.
But what is π_x exactly?

- Disability prevalence at each age
- Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
- Can also depend on future mortality if disability is patterned by time-to-death
- Since π_x changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.
But what is π_x exactly?

- Disability prevalence at each age
- Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
- Can also depend on future mortality if disability is patterned by time-to-death
- Since π_x changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.
But what is π_x exactly?

- Disability prevalence at each age
- Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
- Can also depend on future mortality if disability is patterned by time-to-death
- Since π_x changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.
A simple illustration
A simple illustration
Disability broken down by age and time to death

Proportion of USA males from the 1915-1919 cohort with at least 1 of 5 IADLs
Proportion disabled by TTD and mortality level

Steep TTD Disability

Med TTD Disability

Gentle TTD Disability

Death density

Age

Proportion disabled

Time to Death

Age
Decomposing DLY

- Are differences in DLY from mortality or morbidity?
 - Decomposition methods isolate the effects of changes in L_x and changes in π_x.
 - These are considered as mortality and morbidity effects (Nusselder and Looman 2004, Andreev et al. 2002).
 - Interpretation problem: mortality can change π_x all by itself if disability is patterned by time-to-death.
Decomposing DLY

- Are differences in DLY from mortality or morbidity?
- Decomposition methods isolate the effects of changes in L_x and changes in π_x.
- These are considered as *mortality* and *morbidity* effects (Nusselder and Looman 2004, Andreev et al. 2002).
- Interpretation problem: mortality can change π_x all by itself if disability is patterned by time-to-death.
Decomposing DLY

- Are differences in DLY from mortality or morbidity?
- Decomposition methods isolate the effects of changes in L_x and changes in π_x.
- These are considered as mortality and morbidity effects (Nusselder and Looman 2004, Andreev et al. 2002).
- Interpretation problem: mortality can change π_x all by itself if disability is patterned by time-to-death.
Decomposing DLY

- Are differences in DLY from mortality or morbidity?
- Decomposition methods isolate the effects of changes in \(L_x \) and changes in \(\pi_x \).
- These are considered as *mortality* and *morbidity* effects (Nusselder and Looman 2004, Andreev et al. 2002).
- Interpretation problem: mortality can change \(\pi_x \) all by itself if disability is patterned by time-to-death.
Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010
Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010
Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
 - Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
 - Same for within-population changes over 10-year periods, 1950-2010
Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010
Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010
TTD disability prevalence for different disability types

- ADL ≥ 1 of 5
- ADL ≥ 2 of 5
- ADL ≥ 3 of 5
- In nursing home
- Poor self-rated health
- Unable to name month
Decomposition: Change in disability component

![Graph showing change in disability component for different ADL Disability levels.]{:width=1500px}
Interpreting decomposition results

- True value of the change in disability component is zero by design
- Deviation is result of differences in mortality
- Departure from upper bound depends on patterns of π_x, how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes
Interpreting decomposition results

- True value of the change in disability component is zero by design
- Deviation is result of differences in mortality
- Departure from upper bound depends on patterns of π_x, how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes
Interpreting decomposition results

- True value of the change in disability component is zero by design
- Deviation is result of differences in mortality
- Departure from upper bound depends on patterns of π_x, how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes
Interpreting decomposition results

- True value of the change in disability component is zero by design
- Deviation is result of differences in mortality
- Departure from upper bound depends on patterns of π_x, how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes
Considerations

- Considering morbidity prevalence as a function of time to death does not imply that morbidity incidence is a time to death.
- Modeling prevalence as TTD requires no specification of process.
- In reality morbidity varies over both chronological age and time-to-death.
Considerations

- Considering morbidity prevalence as a function of time to death does not imply that morbidity incidence is a time to death.
- Modeling prevalence as TTD requires no specification of process.
- In reality morbidity varies over both chronological age and time-to-death.
Considerations

- Considering morbidity prevalence as a function of time to death does not imply that morbidity incidence is a time to death.
- Modeling prevalence as TTD requires no specification of process.
- In reality, morbidity varies over both chronological age and time-to-death.
Summary

- HLE or DLY provide an important snapshot of expected life years lived in good or poor health
- Difficulty in interpreting period differences in these quantities between populations
- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant
- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014)
Summary

- HLE or DLY provide an important snapshot of expected life years lived in good or poor health.

- Difficulty in interpreting period differences in these quantities between populations.

- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant.

- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014).
Summary

- HLE or DLY provide an important snapshot of expected life years lived in good or poor health.
- Difficulty in interpreting period differences in these quantities between populations.
- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant.
- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014).
Summary

- HLE or DLY provide an important snapshot of expected life years lived in good or poor health
- Difficulty in interpreting period differences in these quantities between populations
- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant
- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014)
Thanks!