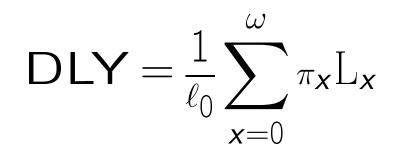


MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FORSCHUNG

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

MAX-PLANCK-INSTITUT M FÜR DEMOGRAFISCHE FO FORSCHUNG R


MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

Healthy Life Expectancy, Mortality, and Age Prevalence of Morbidity Tim Riffe, Alyson van Raalte

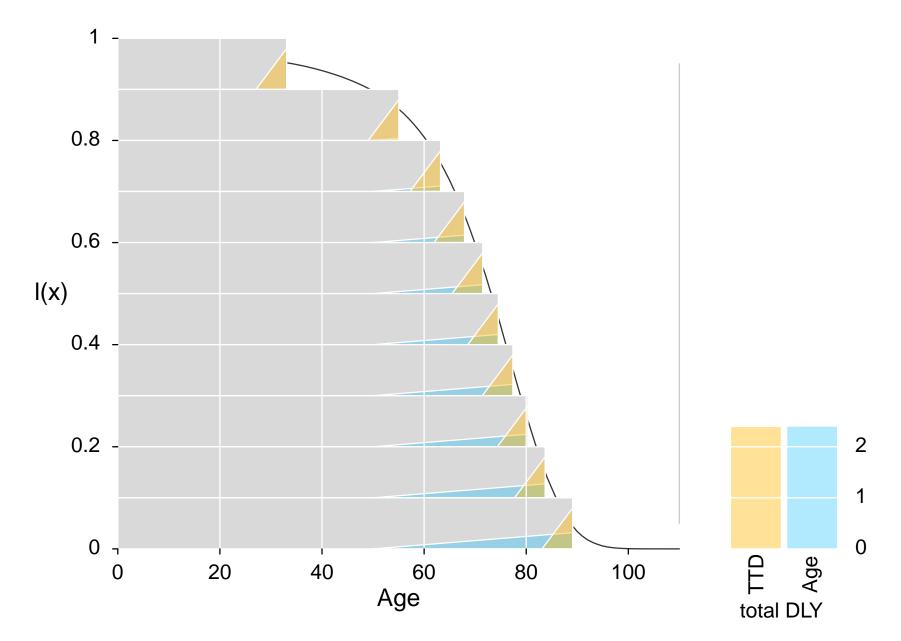
Is variation in health over the lifespan better characterized by chronological age or time-to-death?

• Disability prevalence at each age

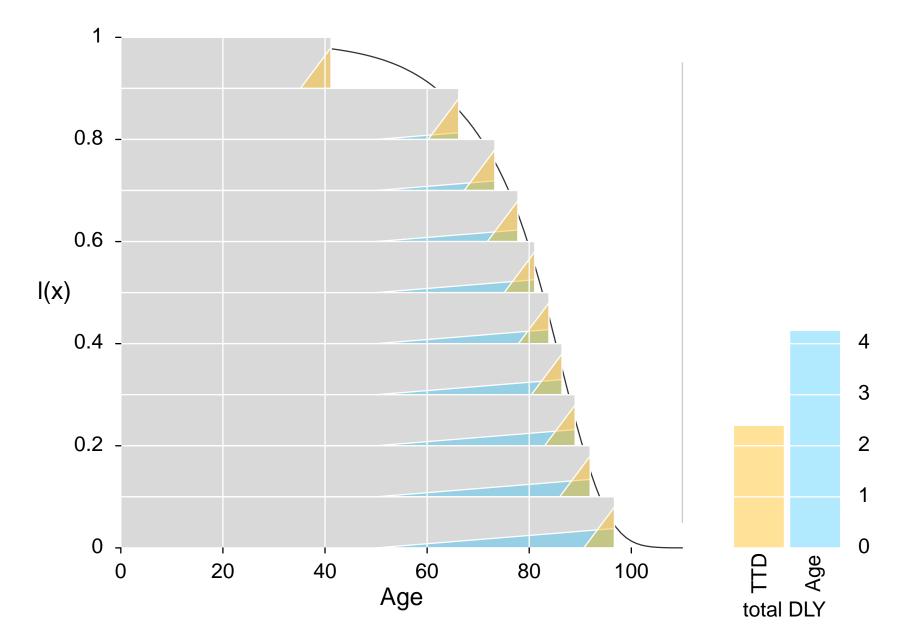
- Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
- Can also depend on future mortality if disability is patterned by time-to-death
- Since π_x changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.

Disability prevalence at each age

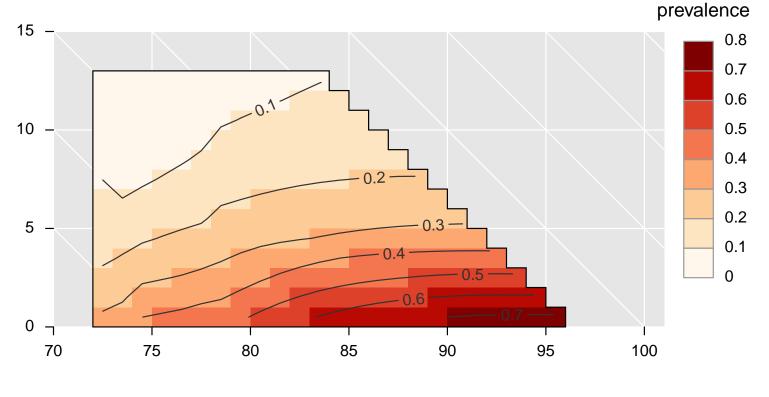
- Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
- Can also depend on future mortality if disability is patterned by time-to-death
- Since π_x changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.



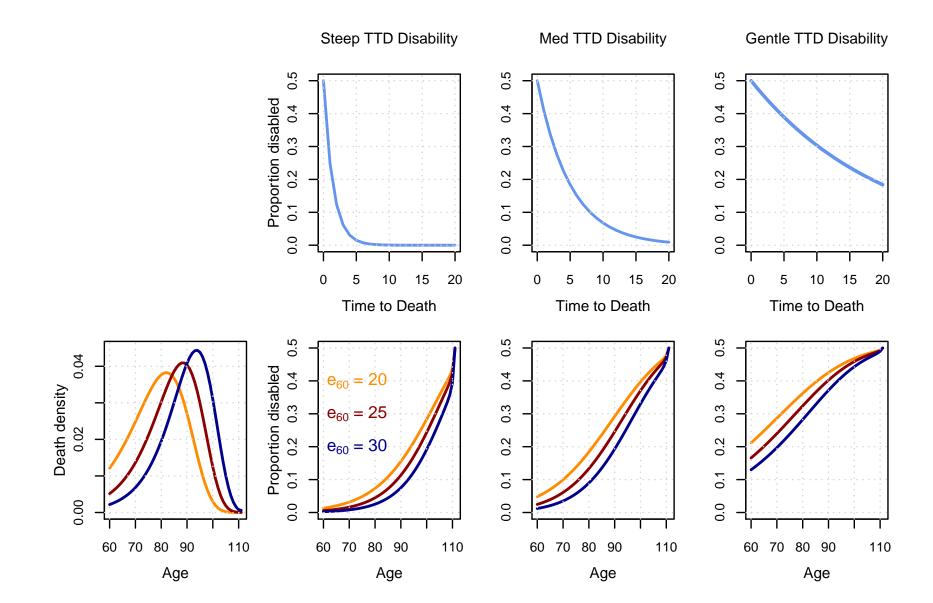
- Disability prevalence at each age
- Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
- Can also depend on future mortality if disability is patterned by time-to-death
- Since π_x changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.



- Disability prevalence at each age
- Stock variable: slow to react to abrupt health innovations since it depends on past cohort experiences with sickness (Barendregt et al. 1994)
- Can also depend on future mortality if disability is patterned by time-to-death
- Since π_x changes across mortality regimes, attributing between-population differences in DLY to mortality and morbidity is problematic.



Disablity broken down by age and time to death


time-to-death

age

Proportion of USA males from the 1915-1919 cohort with at least 1 of 5 IADLs

Proportion disabled by TTD and mortality level

• Are differences in DLY from mortality or morbidity?

- Decomposition methods isolate the effects of changes in L_x and changes in π_x
- These are considered as *mortality* and *morbidity* effects (Nusselder and Looman 2004, Andreev et al. 2002)
- Interpretation problem: mortality can change π_x all by itself if disability is patterned by time-to-death

• Are differences in DLY from mortality or morbidity?

- Decomposition methods isolate the effects of changes in L_x and changes in π_x
- These are considered as *mortality* and *morbidity* effects (Nusselder and Looman 2004, Andreev et al. 2002)
- Interpretation problem: mortality can change π_x all by itself if disability is patterned by time-to-death

- Are differences in DLY from mortality or morbidity?
- Decomposition methods isolate the effects of changes in L_x and changes in π_x
- These are considered as *mortality* and *morbidity* effects (Nusselder and Looman 2004, Andreev et al. 2002)
- Interpretation problem: mortality can change π_x all by itself if disability is patterned by time-to-death

- Are differences in DLY from mortality or morbidity?
- Decomposition methods isolate the effects of changes in L_x and changes in π_x
- These are considered as *mortality* and *morbidity* effects (Nusselder and Looman 2004, Andreev et al. 2002)
- Interpretation problem: mortality can change π_x all by itself if disability is patterned by time-to-death

Estimating the upper magnitude of bias of morbidity differences from mortality decline

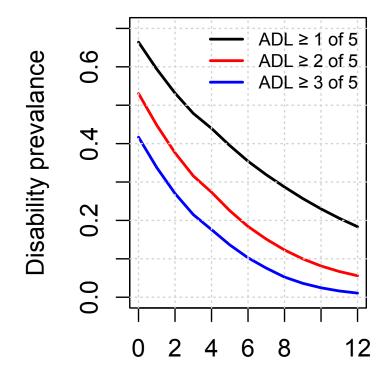
- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010

Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010

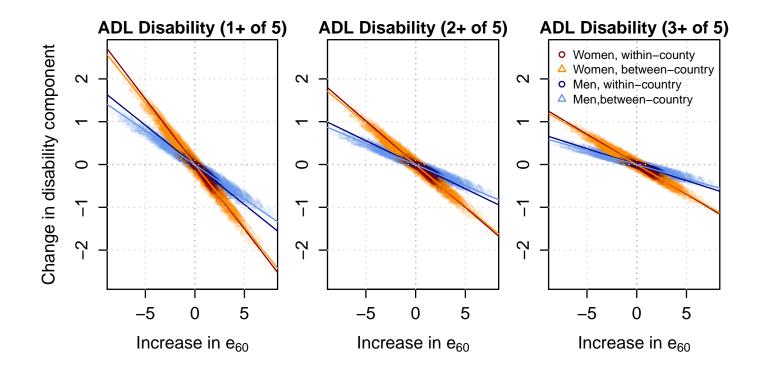
Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010


Estimating the upper magnitude of bias of morbidity differences from mortality decline

- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010

Estimating the upper magnitude of bias of morbidity differences from mortality decline


- Estimated average TTD profile for different disability types, based on USA HRS data, quinquennial cohorts 1905-1930
- Calculated apparent period age prevalence of morbidity for HMD countries had they experienced the US TTD morbidity
- Assumed all populations were stationary
- Decomposed differences between all population pairs in 1980, 1990, 2000 into apparent mortality and morbidity components
- Same for within-population changes over 10-year periods, 1950-2010

TTD disability prevalence for different disabilty types

Time to Death (Years)

Decomposition: Change in disability component

• True value of the change in disability component is zero by design

- Deviation is result of differences in mortality
- Departure from upper bound depends on patterns of π_x , how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes

• True value of the change in disability component is zero by design

Deviation is result of differences in mortality

- Departure from upper bound depends on patterns of π_x , how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes

- True value of the change in disability component is zero by design
- Deviation is result of differences in mortality
- Departure from upper bound depends on patterns of π_x , how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes

- True value of the change in disability component is zero by design
- Deviation is result of differences in mortality
- Departure from upper bound depends on patterns of π_x , how well US pattern applies, departure from stationarity.
- Different slopes partly from differences in final π_x between disability types and the sexes

- Considering morbidity prevalence as a function of time to death does not imply that morbidity incidence is a time to death
- Modeling prevalence as TTD requires no specification of process
- In reality morbidity varies over both chronological age and time-to-death

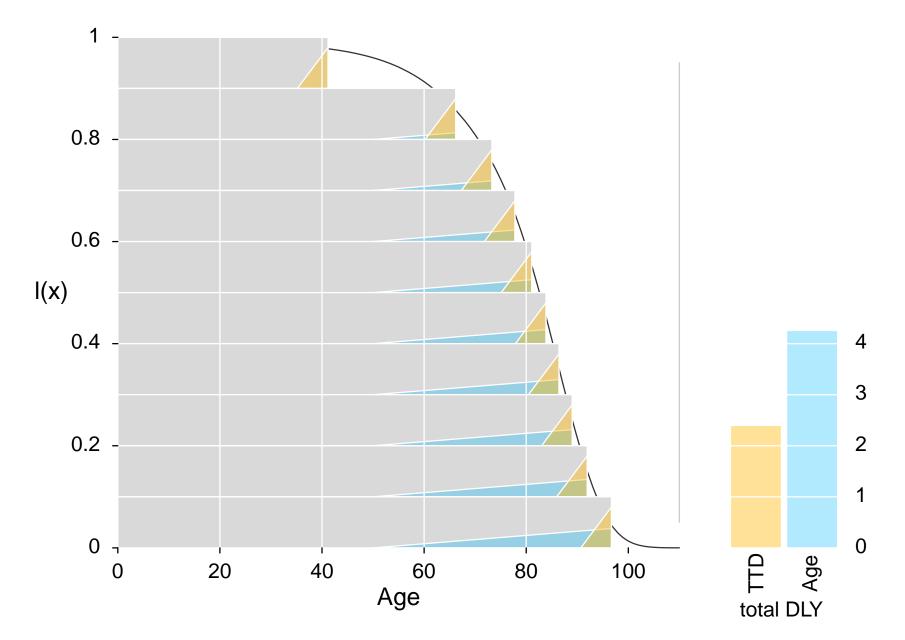
- Considering morbidity prevalence as a function of time to death does not imply that morbidity incidence is a time to death
- Modeling prevalence as TTD requires no specification of process
- In reality morbidity varies over both chronological age and time-to-death

- Considering morbidity prevalence as a function of time to death does not imply that morbidity incidence is a time to death
- Modeling prevalence as TTD requires no specification of process
- In reality morbidity varies over both chronological age and time-to-death

• HLE or DLY provide an important snapshot of expected life years lived in good or poor health

- Difficulty in interpreting period differences in these quantities between populations
- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant
- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014)

- HLE or DLY provide an important snapshot of expected life years lived in good or poor health
- Difficulty in interpreting period differences in these quantities between populations
- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant
- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014)



- HLE or DLY provide an important snapshot of expected life years lived in good or poor health
- Difficulty in interpreting period differences in these quantities between populations
- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant
- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014)

- HLE or DLY provide an important snapshot of expected life years lived in good or poor health
- Difficulty in interpreting period differences in these quantities between populations
- Chronological age pattern of disability can change solely as a function of mortality change even when the underlying morbidity function is held constant
- Could partly explain why mortality levels and disability prevalence are related (Van Oyen et al. 2013, Luy and Minagawa 2014)

